A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Control of Bilayer Transport through a Photoswitchable Membrane-Stiffening Agent. | LitMetric

Control of Bilayer Transport through a Photoswitchable Membrane-Stiffening Agent.

Angew Chem Int Ed Engl

Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands.

Published: December 2024

The mobility of proteins in the bilayer membrane is affected by (local) changes in lipid environment, which is important to their biological functioning. Artificial molecular systems that-to some extent-imitate tasks of membrane-embedded proteins are increasingly developed, however, they are usually controlled through responsive units in their core structure. Here we present an alternative approach based on an amphiphilic stiff-stilbene derivative that enables control of membrane fluidity by light. The fluidity increase upon E-to-Z isomerization is shown to enhance the activity of known synthetic anion transporters as a result of a higher mobility. The photoisomerization process is studied by UV/Vis and H NMR spectroscopy in solution and in POPC vesicles, where the light-induced changes in fluidity and hence, activity of anion transporters, are monitored by fluorescence spectroscopy. Dynamic light-scattering (DLS) and cryo-EM studies show that vesicle integrity is not impaired by photoswitching. Our work introduces a versatile approach to control solute transport by carrier molecules. Moreover, the photocontrol over membrane fluidity and, with that, mobility could eventually be used for directed motion, which we expect to be key in achieving active transport in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202420232DOI Listing

Publication Analysis

Top Keywords

membrane fluidity
8
anion transporters
8
control bilayer
4
bilayer transport
4
transport photoswitchable
4
photoswitchable membrane-stiffening
4
membrane-stiffening agent
4
agent mobility
4
mobility proteins
4
proteins bilayer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!