Imidazoline derivatives are widely used to prevent corrosion due to their toxicity and mitigation potential. The present study deals with the synthesis of two imidazole Schiff derivatives (JSMP and JSPP) based on imidazole hexanoate (JSMZ). The corrosion mitigation potential and mechanism in 1.0 mol L HCl solution were studied with a focus on the influence of increasing the number of phenyl groups. The inhibitive performance was investigated by weight loss and electrochemical experiments. The accuracy of the corrosion protection mechanism was verified through scanning electron microscopy (SEM) + energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), and the corrosion inhibition mechanism was further verified through theoretical simulations (density functional theory and molecular dynamics). JSMP and JSPP formed a defensive layer over the surface of Q235. As the concentration of the corrosion inhibitor and the number of phenyl rings increased, the corrosion protection ability also increased gradually. The obtained corrosion protection effectiveness was 94.95% at 2.0 mmol L. JSMP and JSPP belong to a mixed type and predominantly cathodic inhibitors, which spontaneously adsorb on metal surfaces and follow Langmuir isotherm adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c03256DOI Listing

Publication Analysis

Top Keywords

jsmp jspp
12
corrosion protection
12
corrosion
8
corrosion inhibition
8
imidazoline derivatives
8
mitigation potential
8
number phenyl
8
mechanism verified
8
systematic analysis
4
analysis benzene
4

Similar Publications

Imidazoline derivatives are widely used to prevent corrosion due to their toxicity and mitigation potential. The present study deals with the synthesis of two imidazole Schiff derivatives (JSMP and JSPP) based on imidazole hexanoate (JSMZ). The corrosion mitigation potential and mechanism in 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!