Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To select appropriate organic ligands is an effective strategy to enhance the proton conductivities of polyoxometalate-based metal-organic frameworks (POMOFs). Two new Dawson-type POMOFs, named CUST-961 and CUST-962, have been designed and synthesized via combining Htzbc selected by hard and soft acid and base theory and density functional theory calculation, transition metal ions, alkali metal ions (Na and K), and Dawson-type polyoxometalates ([PW]) under the hydrothermal method. Their stabilities under different temperatures and relative humidities (RHs) have been investigated through powder X-ray diffraction and thermogravimetric analysis. Both CUST-961 and CUST-962 exhibited excellent aqueous and thermal stabilities. The alternating current (AC) impedance spectrum tests revealed that the proton conductivity of CUST-961 could reach 1.4 × 10 S cm at 95 °C and 98% RH, which is about 3 times that of CUST-962. The different proton conductivities between the two compounds are due to the fact that CUST-961 possesses more uncoordinated carboxylic acid groups, as confirmed by attenuated total reflection infrared spectroscopy and H solid-state nuclear magnetic resonance spectroscopy, which can not only act as the proton source but also establish a richer hydrogen bonding network to enhance proton conduction. This work provides a new strategy and insight for the design and preparation of polyoxometalate-based proton conductive materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c04109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!