A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uncoordinated Carboxyl Groups as Proton Sources in Polyoxometalate-Based Metal-Organic Frameworks Enhance Proton Conduction. | LitMetric

AI Article Synopsis

  • The study focuses on improving proton conductivities in polyoxometalate-based metal-organic frameworks (POMOFs) by selecting suitable organic ligands, resulting in the development of two new compounds, CUST-961 and CUST-962.* -
  • Both compounds were synthesized using a hydrothermal method and showed strong stability across various temperatures and humidity levels, confirmed through techniques like powder X-ray diffraction and thermogravimetric analysis.* -
  • CUST-961 demonstrated significantly higher proton conductivity than CUST-962, attributed to its higher number of uncoordinated carboxylic acid groups that enhance hydrogen bonding and proton sources, highlighting a novel approach to creating proton conductive materials.*

Article Abstract

To select appropriate organic ligands is an effective strategy to enhance the proton conductivities of polyoxometalate-based metal-organic frameworks (POMOFs). Two new Dawson-type POMOFs, named CUST-961 and CUST-962, have been designed and synthesized via combining Htzbc selected by hard and soft acid and base theory and density functional theory calculation, transition metal ions, alkali metal ions (Na and K), and Dawson-type polyoxometalates ([PW]) under the hydrothermal method. Their stabilities under different temperatures and relative humidities (RHs) have been investigated through powder X-ray diffraction and thermogravimetric analysis. Both CUST-961 and CUST-962 exhibited excellent aqueous and thermal stabilities. The alternating current (AC) impedance spectrum tests revealed that the proton conductivity of CUST-961 could reach 1.4 × 10 S cm at 95 °C and 98% RH, which is about 3 times that of CUST-962. The different proton conductivities between the two compounds are due to the fact that CUST-961 possesses more uncoordinated carboxylic acid groups, as confirmed by attenuated total reflection infrared spectroscopy and H solid-state nuclear magnetic resonance spectroscopy, which can not only act as the proton source but also establish a richer hydrogen bonding network to enhance proton conduction. This work provides a new strategy and insight for the design and preparation of polyoxometalate-based proton conductive materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c04109DOI Listing

Publication Analysis

Top Keywords

enhance proton
12
proton
8
polyoxometalate-based metal-organic
8
metal-organic frameworks
8
proton conduction
8
proton conductivities
8
cust-961 cust-962
8
metal ions
8
uncoordinated carboxyl
4
carboxyl groups
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!