Charge State Influence on Stability and Isomerism in Dehydrogenated PAHs: Insights from Anthracene, Acridine, and Phenazine.

Chemphyschem

Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid, 28049, Spain.

Published: December 2024

In this study, we systematically explored the stability and isomerism of neutral and dehydrogenated polycyclic aromatic hydrocarbons (PAHs) in various charge states, focusing on anthracene, acridine, and phenazine. Our findings highlight key aspects that deepen the understanding of these molecules' reactivity and stability, relevant in both laboratory and astrophysical contexts. Structural symmetry and the presence of nitrogen atoms significantly impact PAH stability and reactivity. The optimal site for the first dehydrogenation varies with charge state, with notable differences in stability observed across different positions and charge states. For the loss of two hydrogens, there is a clear competition between low and high spin states, influenced by the positions of the hydrogens lost. Infrared spectral analysis reveals characteristic frequencies of conjugated C-C bonds and variations across different charge states. The elimination of H typically occurs at adjacent carbons, forming bonds similar to triple bonds. Reaction networks for anthracene, acridine, and phenazine indicate preferred pathways for hydrogen loss, driven by the need to minimize charge repulsion and maintain aromaticity. Adjacent hydrogen loss is predominant in neutral and singly charged states, shifting to non-adjacent loss in higher charge states.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202400729DOI Listing

Publication Analysis

Top Keywords

charge states
16
anthracene acridine
12
acridine phenazine
12
charge state
8
stability isomerism
8
hydrogen loss
8
charge
7
states
6
stability
5
state influence
4

Similar Publications

Altering the edge sites of 2D MXenes for electrochemical dinitrogen reduction reaction (ENRR) is widely reported, whereas activation of its relatively inert basal planes is neglected. Herein, the activation and the optimization of the basal planes of TiCT (T = *F, *O, and *OH) MXenes toward enhanced ENRR to ammonia is reported. The balanced surface functionalization in TiCT regulates the ENRR kinetics by regulating the potential of zero charge (E) and the electrochemical work function ( ).

View Article and Find Full Text PDF

Dynamic Redox Induced Localized Charge Accumulation Accelerating Proton Exchange Membrane Electrolysis.

Adv Mater

January 2025

Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

The sluggish anodic oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolysis necessitates applied bias to facilitate electron transfer as well as bond cleavage and formation. Traditional electrocatalysis focuses on analyzing the effects of electron transfer, while the role of charge accumulation induced by the applied overpotential has not been thoroughly investigated. To explore the influence mechanism of bias-driven charge accumulation, capacitive Mn is incorporated into IrO to regulate the local electronic structure and the adsorption behavior.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are a promising platform for heterogeneous photocatalysis due to their stability and design diversity, but their potential is often restricted by unmanageable targeted excitation and charge transfer. Herein, a bimetallic COF integrating photosensitizers and catalytic sites is designed to facilitate locally ultrafast charge transfer, aiming to improve the photocatalytic reduction of CO. The strategy uses a "one-pot" method to synthesize the bimetallic COF (termed PBCOF) through in situ Schiff-base condensation of Pyrene with MBpy (M = Ru, Re) units.

View Article and Find Full Text PDF

The dual-site electrocatalysts formed by metal single atoms combines with metal nanoparticles represent a promising strategy to enhance both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Herein, defect engineering is applied to dual-site ORR and OER electrocatalysts. Its design, synthesis, structural properties, and catalytic performance experimentally and theoretically are insightfully studied for the single-atomic Fe─N and the adjacent FeCo nanoalloy (FeCo) as dual-site loading on nitrogen-doped graphene aerogel (Fe─N/FeCo@NGA).

View Article and Find Full Text PDF

Permanent Electride Magnets Induced by Quasi-Atomic Non-Nucleus-Bound Electrons.

Adv Mater

January 2025

Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

Interstitial quasi-atomic electrons (IQEs) in the quantized energy levels of positively charged cavities possess a substantial own magnetic moment and control the magnetism of crystalline electrides depending on the interaction with surrounding cations. However, weak spin-orbit coupling and gentle exchange interaction restricted by the IQEs preclude a large magnetic anisotropic, remaining a challenge for a hard magnetism. It is reported that 2D [ReC]·2e electrides (Re = Er, Ho, Dy, and Tb) show the permanent magnetism in a ferrimagnetic ground state, mimicking the ferrites composed of magnetic sublattices with different spin polarizations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!