Vibrio spp. are remarkably diverse bacteria, being worthy of investigation not only for their antibiotic resistance and virulence, but also for their biotechnological potential. Indeed, there is increasing evidence that these bacteria display industrially relevant traits, particularly as producers of antimicrobial substances, tensioactive/emulsifying compounds, and enzymes. Here, our aim was to investigate the potential of Vibrio strains isolated from two different marine sources to produce such biotechnologically applicable substances. From the eighteen analyzed strains, five were isolated from plastic particles from a heavily polluted urban estuary and 13 from calcareous sponges inhabiting submarine caves in an isolated volcanic archipelago in the Atlantic Ocean. Enzymatic screening revealed that most strains were agarolytic and cellulolytic. Overall, six strains showed antimicrobial activity against Staphylococcus aureus ATCC 29,213, with four of them active towards Escherichia coli ATCC 25,922 as well. Additionally, eight strains were positive for the production of bioemulsifiers. Genomic analyses of four strains further revealed insights regarding the enzymatic arsenal, as shown by the detection of several key gene clusters pertaining to the chitin degradation pathway, and also encoding diverse classes of antimicrobial-active metabolites. Our findings highlight the biotechnological potential of Vibrio spp., evidencing their functional diversity and the need for continued and sustained prospecting of this bacterial genus to uncover its potential high-value-added bioproducts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-024-04013-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!