AI Article Synopsis

  • Human induced pluripotent stem cells (hiPSCs) display clonal heterogeneity affecting their ability to differentiate into cardiomyocytes (CMs), necessitating a deeper understanding of these variations.
  • By analyzing multiple hiPSC clones from a single donor, researchers categorized them into productive (PC) and non-productive (NPC) groups based on their differentiation efficiency, uncovering distinct biological profiles.
  • Integrating RNA sequencing and chromatin accessibility data, the study identified biomarkers like TEK and SDR42E1 that are linked to CM differentiation potential, providing insights that could improve the selection of hiPSC clones for clinical use.

Article Abstract

Human induced pluripotent stem cells (hiPSCs) generate multiple clones with inherent heterogeneity, leading to variations in their differentiation capacity. Previous studies have primarily addressed line-to-line variations in differentiation capacity, leaving a gap in the comprehensive understanding of clonal heterogeneity. Here, we aimed to profile the heterogeneity of hiPSC clones and identify predictive biomarkers for cardiomyocyte (CM) differentiation capacity by integrating transcriptomic, epigenomic, endogenous retroelement, and protein kinase phosphorylation profiles. We generated multiple clones from a single donor and validated that these clones exhibited comparable levels of pluripotency markers. The clones were classified into two groups based on their differentiation efficiency to CMs-productive clone (PC) and non-productive clone (NPC). We performed RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with sequencing (ATAC-seq). NPC was enriched in vasculogenesis and cell adhesion, accompanied by elevated levels of phosphorylated ERK1/2. Conversely, PC exhibited enrichment in embryonic organ development and transcription factor activation, accompanied by increased chromatin accessibility near transcription start site (TSS) regions. Integrative analysis of RNA-seq and ATAC-seq revealed 14 candidate genes correlated with cardiac differentiation potential. Notably, TEK and SDR42E1 were upregulated in NPC. Our integrative profiles enhance the understanding of clonal heterogeneity and highlight two novel biomarkers associated with CM differentiation. This insight may facilitate the identification of suboptimal hiPSC clones, thereby mitigating adverse outcomes in clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635083PMC
http://dx.doi.org/10.1007/s00018-024-05493-9DOI Listing

Publication Analysis

Top Keywords

clonal heterogeneity
12
differentiation capacity
12
human induced
8
induced pluripotent
8
pluripotent stem
8
stem cells
8
cardiac differentiation
8
multiple clones
8
variations differentiation
8
understanding clonal
8

Similar Publications

Genetic architecture of Multiple Myeloma and its prognostic implications - An updated review.

Malays J Pathol

December 2024

Universiti Sains Malaysia, School of Medical Sciences, Human Genome Centre, Health Campus, Kelantan, Malaysia.

Multiple myeloma (MM), a clonal B-cell neoplasia, is an incurable and heterogeneous disease where survival ranges from a few months to more than 10 years. The clinical heterogeneity of MM arises from multiple genomic events that result in tumour development and progression. Recurring genomic abnormalities including cytogenetic abnormalities, gene mutations and abnormal gene expression profiles in myeloma cells have a strong prognostic power.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of malignant plasma cells within the bone marrow. The disease's complexity is underpinned by a variety of genetic and molecular abnormalities that drive its progression.

Methods: This review was conducted through a state-of-The-art literature search, primarily utilizing PubMed to gather peer-reviewed articles.

View Article and Find Full Text PDF

c-JUN interacts with HDAC1 as a potential combinatorial therapeutic target in acute myeloid leukemia.

Int Immunopharmacol

December 2024

Department of Scientific Research, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China. Electronic address:

Acute myeloid leukemia (AML) is a biologically heterogeneous disease originating from the clonal expansion of hematopoietic stem cells (HSCs). Clonal expansion of hematopoietic stem cell progenitors (HSC-Prog), along with a block in differentiation, are hallmark features of AML. The disease is characterized by poor clinical outcomes, highlighting the urgent need for effective therapeutic strategies and suitable drug targets.

View Article and Find Full Text PDF

Decoding cancer etiology with cellular reprogramming.

Curr Opin Genet Dev

December 2024

Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. Electronic address:

Cancer research remains clinically unmet in many areas due to limited access to patient samples and the lack of reliable model systems that truly reflect human cancer biology. The emergence of patient-derived induced pluripotent stem cells and engineered human pluripotent stem cells (hPSCs) has helped overcome these challenges, offering a versatile alternative platform for advancing cancer research. These hPSCs are already proving to be valuable models for studying specific cancer driver mutations, offering insights into cancer origins, pathogenesis, tumor heterogeneity, clonal evolution, and facilitating drug discovery and testing.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by the (oligo)clonal expansion of myeloid progenitor cells. Despite advances in treatment, AML remains challenging to cure, particularly in patients with specific genetic abnormalities. Menin inhibitors have emerged as a promising therapeutic approach, targeting key genetic drivers of AML such as KMT2A rearrangements and NPM1 mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!