The contamination of seas, rivers, lakes, and groundwater by industrial, hospital, and domestic effluents is a global health problem. Scientific approaches are needed to assess and mitigate the impacts of those pollutants, seeking more sustainable alternatives that meet established environmental standards. Among the various contaminants that are released into water sources, phenobarbital (PHEN), a long-acting barbiturate, applied as a hypnotic, sedative, and in the treatment of seizures is an aquatic pollutant, raises significant concerns for human health and the environment. Based on the high surface area of carbon nanotubes (CNTs) and the magnetic properties of nickel ferrite (NiFeO) nanoparticles, this work presents, for the first time, the application of CNT@NiFeO on the adsorption of PHEN. The employing of CNT as a barbiturate adsorber was investigated, using NiFeO nanoparticles as a magnetic tool for recovering the nanocomposite from water. The PHEN adsorption study was performed in batch adsorption mode. Thermodynamic isotherms and kinect were performed using Langmuir, Freundlich, Sips, pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich diffusion models. CNT@NiFe2O4 showed an adsorption capacity of 76% for this drug, indicating it is a promising nanomaterial for removing PHEN from water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35730-4DOI Listing

Publication Analysis

Top Keywords

adsorption study
8
nifeo nanoparticles
8
adsorption
5
cnt@nifeo nanocomposite
4
nanocomposite phenobarbital
4
phenobarbital removal
4
removal adsorption
4
study characterization
4
characterization contamination
4
contamination seas
4

Similar Publications

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

Efficient Catalysis for Zinc-Air Batteries by Multiwalled Carbon Nanotubes-Crosslinked Carbon Dodecahedra Embedded with Co-Fe Nanoparticles.

Small

January 2025

Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.

The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.

View Article and Find Full Text PDF

The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!