The performance of blue devices utilizing perovskite quantum dots (PQDs) has lagged remarkably behind that of green light-emitting diodes because of low luminescence quantum yields and poor spectral stability. Here, benefiting from the rapid and short diffusion paths within the nanosized silicalite-1 (N-Si-1) zeolite (∼40 nm) channels, CsPbBr PQDs encapsulated within N-Si-1 show a high dispersion with an ultrasmall particle size of ∼2.38 nm and a blue emission of 474 nm with a high photoluminescence quantum yield (PLQY) of 44.4%. Subsequently, the surface hydrophobization of CsPbBr-N-Si-1 using octadecyltrimethoxysilane (ODTMS) enables ultrastable blue luminescence. A white-light-emitting diode (WLED) device with CIE color coordinates (0.31, 0.28) was constructed by combining CsPbBr-M (blue), CsPbBr-N-Si-1 (green), and KSF:Mn phosphor (red) on a 365 nm chip. This work introduces a feasible strategy to modulate the emission of CsPbBr PQDs through a strong confinement effect within a hydrophobic nanozeolite matrix, offering promising applications in backlight displays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c05132 | DOI Listing |
J Phys Chem Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.
Developing heavy-metal-free materials with wide tunable emission is important to light-emitters. The alloying method is utilized in ZnSe magic size clusters (MSCs) with Te to form ZnSeTe and manipulate the band gap structure in ZnSe. The growth of ZnTe on alloyed ZnSeTe quantum dots (QDs) forms ZnSeTe/ZnTe core/shell nanostructures, showing the tunable photoluminescence emission peak from 450 to 760 nm with the different thicknesses of ZnTe shell.
View Article and Find Full Text PDFInt J Legal Med
January 2025
Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India.
Polymerase Chain Reaction (PCR) has transformed forensic DNA analysis but is still limited when dealing with compromised trace or inhibitor-containing samples. Nanotechnology has been integrated into nanoPCR (nanoparticle-assisted PCR) to overcome these obstacles. Nanomaterials improve PCR sensitivity, selectivity, and efficiency.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States.
Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
Correction for 'Preventing biofilm formation and eradicating pathogenic bacteria by Zn doped histidine derived carbon quantum dots' by Vijay Bhooshan Kumar , , 2024, , 2855-2868, https://doi.org/10.1039/D3TB02488A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!