A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contact force measurement of the compliant gripper based on a force sensing model. | LitMetric

Contact force measurement of the compliant gripper based on a force sensing model.

Rev Sci Instrum

Manufacturing Engineering Institute, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

Published: December 2024

It is challenging for most existing grippers to accurately measure their contact force when grasping unstructured objects. To address this issue, a novel force sensing model is established. A compliant gripper derived by the topology optimization method is introduced, and its actual deformation is measured without contacting by OpenCV. Meanwhile, the hyperelastic constitutive model of flexible materials is further studied by the uniaxial compression test to improve the accuracy of its theoretical deformation. Subsequently, the force sensing model is established based on linear finite element theory and the deep neural network (DNN) algorithm. The nonlinear errors of actual deformation (input layer) and theoretical deformation (output layer) are compensated by the DNN algorithm. This compensated deformation is then input into the linear force sensing model to determine the contact force. Finally, experimental results show that the gripper has a high force sensing accuracy (average error less than 3%) in the middle part. While the force sensing accuracy at the end of the compliant gripper has declined, the contact force measurement of the model in the middle of the new compliant gripper has been effectively verified.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0238161DOI Listing

Publication Analysis

Top Keywords

force sensing
24
contact force
16
compliant gripper
16
sensing model
16
force
9
force measurement
8
model established
8
actual deformation
8
theoretical deformation
8
dnn algorithm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!