Understanding the confinement of fast ions is crucial for plasma heating and non-inductive current drive, i.e., for the operation of a fusion reactor. Interactions between fast ions and magnetohydrodynamic instabilities can reduce the performance of fusion reactions. Measuring the spatial shape and amplitude is crucial for constraining numerical modeling of the interaction between fast ions and these instabilities. Soft x rays can be used to study these magnetic instabilities. In particular, SXR tomography is used to reconstruct the two-dimensional profile of the SXR emissivity requiring only line integrated measurements, thus providing the spatial structure of the instabilities. This work presents SXR tomography reconstruction performed on synthetic SXR emissions from the Mega Ampere Spherical Tokamak Upgrade device. The synthetic SXR emissions are derived from time dependent tokamak transport data analysis code (TRANSP/NUBEAM) simulations. Different tomographic reconstruction models are compared, and the effect of two additional fans of intersecting lines of sight on the reconstructions' performances is investigated. The additional intersecting lines of sight greatly improve the accuracy of the reconstructions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0219168 | DOI Listing |
Analyst
January 2025
Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
Water-soluble and biocompatible protein carbon dots (P-CDs) were simply prepared from egg white by a rapid one-step neutralization heat reaction. Unexpectedly, the thus-fabricated P-CDs could present excitation-dependent tunable fluorescence that could be quenched specifically by Fe and Fe ions with obvious color changes. A high-throughput fluorimetric platform was thereby developed by coating the P-CDs onto a capillary array for detection of total iron ions in fish blood samples, with a linear concentration range of 0.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
We describe a simple gas expansion ion source based on static discharge voltages and a commercially available pulsed valve. The discharge is initiated by the gas pulse itself between two high voltage electrodes, without the need for fast voltage switches or complex timing schemes. The ion source very reliably produces intense bursts of molecular ions (with currents exceeding 100 μA during the pulse-on phase) with only minor pulse-to-pulse variations in intensity and pulse shape.
View Article and Find Full Text PDFMater Today Bio
February 2025
Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany.
In recent years, metal-organic frameworks (MOFs) have emerged as promising materials for biomedical applications, owing to their superior chemical versatility, unique textural properties and enhanced mechanical properties. However, their fast and uncontrolled degradation, together with the reduced bioactivity have restricted their clinical potential. To overcome these limitations, MOFs can be synergistically combined with other materials, such as bioactive glasses (BGs), known for their bioactivity and therapeutic ion releasing capabilities.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
Two novel nitrogen hybrid fluorescent sensors based on the ESIPT mechanism were successfully synthesized for the detection of fluoride ions (F), and they exhibit high sensitivity and selectivity with a fast response. The detection limits even reach the parts per billion level. With the addition of F, both sensors showed a ratiometric fluorescence change with a large Stokes shift.
View Article and Find Full Text PDFHomeostasis is a driving principle in physiology. To achieve homeostatic control of neural activity, neurons monitor their activity levels and then initiate corrective adjustments in excitability when activity strays from a set point. However, fluctuations in the brain microenvironment, such as temperature, pH, and other ions represent some of the most common perturbations to neural function in animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!