Computational methods to predict binding affinity of protein-ligand complex have been used extensively to design inhibitors for proteins selected as drug targets. In recent years machine learning (ML) is being increasingly used for design of drugs/inhibitors. However, ranking compounds as per their experimental binding affinity has remained a major challenge. Therefore, it is necessary to develop ML-based scoring function (MLSF) for predicting the binding affinity of protein-ligand complexes. In this work, protein-ligand interaction features, namely, extended connectivity interaction fingerprints (ECIF), derived from the PDBbind dataset have been used to build ML models for binding affinity prediction. The benchmarking has been done on the Comparative Assessment of Scoring Functions (CASF) dataset and also by predicting the binding affinity of unseen protein-ligand complexes which have structural features different from those present in the training dataset. Furthermore, an improvement in the performance of MLSF on the redocked CASF complexes generated by AutoDock Vina software was seen when the training set consisting of crystal structures was supplemented with redocked protein-ligand complexes. The MLSF trained on crystal structures alone using a combination of ECIF and VINA features also predicted binding affinities of crystal as well as docked complexes with high accuracy. Overall, the MLSF developed in this work shows improved performance compared to conventional SFs and several other MLSFs. It will be a valuable resource for identifying novel inhibitors by structure-based virtual screening protocols. The proposed MLSF SG-ML-PLAP (Structure-Guided Machine-Learning-based Protein-Ligand Affinity Predictor) is freely accessible as a webserver, http://www.nii.ac.in/sg-ml-plap.html.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633052PMC
http://dx.doi.org/10.1002/pro.5257DOI Listing

Publication Analysis

Top Keywords

binding affinity
24
protein-ligand complexes
12
sg-ml-plap structure-guided
8
scoring function
8
affinity prediction
8
affinity protein-ligand
8
predicting binding
8
crystal structures
8
protein-ligand
7
binding
7

Similar Publications

The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) form an inflammasome by assembling with apoptosis-associated speck-like protein containing a CARD (ASC) and procaspase-1 that plays a pivotal role in various neurodegenerative diseases such as Alzheimer's and Parkinson diseases. We designed native peptides derived from the PYDs of NLRP3 and ASC based on their interfacial interaction to inhibit NLRP3 inflammasome formation. Screening revealed that , derived from NLRP3, inhibits inflammasome activation.

View Article and Find Full Text PDF

Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2.

Sci Signal

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.

View Article and Find Full Text PDF

The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.

View Article and Find Full Text PDF

This study was undertaken to assess the antioxidant and neuropharmacological potentials of the methanol leaf extract of Acanthus ebracteatus (MAEL) through experimental and in silico methods. The phytochemical screening (PS) and GC-MS (gas chromatography-mass spectrometry) identified 28 phytochemicals with different classes in nature in MAEL. The MAEL revealed better antioxidant activity through various in vitro antioxidant assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!