A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting gene expression from histone marks using chromatin deep learning models depends on histone mark function, regulatory distance and cellular states. | LitMetric

AI Article Synopsis

  • Researchers used advanced computational models to explore how different histone marks affect gene expression but found previous approaches missed important factors like cell state and histone function.
  • The study examined seven histone marks in eleven cell types and discovered that no single histone mark consistently predicts gene expression, emphasizing the importance of considering histone function, genomic distance, and cellular context together.
  • The research also included simulations that revealed potential disease-related genetic loci and suggested new ways to leverage deep learning models for further biological discoveries.

Article Abstract

To understand the complex relationship between histone mark activity and gene expression, recent advances have used in silico predictions based on large-scale machine learning models. However, these approaches have omitted key contributing factors like cell state, histone mark function or distal effects, which impact the relationship, limiting their findings. Moreover, downstream use of these models for new biological insight is lacking. Here, we present the most comprehensive study of this relationship to date - investigating seven histone marks in eleven cell types across a diverse range of cell states. We used convolutional and attention-based models to predict transcription from histone mark activity at promoters and distal regulatory elements. Our work shows that histone mark function, genomic distance and cellular states collectively influence a histone mark's relationship with transcription. We found that no individual histone mark is consistently the strongest predictor of gene expression across all genomic and cellular contexts. This highlights the need to consider all three factors when determining the effect of histone mark activity on transcriptional state. Furthermore, we conducted in silico histone mark perturbation assays, uncovering functional and disease related loci and highlighting frameworks for the use of chromatin deep learning models to uncover new biological insight.

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gkae1212DOI Listing

Publication Analysis

Top Keywords

histone mark
32
gene expression
12
learning models
12
mark function
12
mark activity
12
histone
11
histone marks
8
chromatin deep
8
deep learning
8
mark
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!