Hybrid halide perovskites form a promising class of light-absorbing materials. Among the numerous 3D semiconducting perovskites, there is a group of emerging aziridinium-based hybrids that are considered to be prospective materials for optoelectronic applications. In this work, we report the mixed halide aziridinium perovskites of (AzrH)PbBrxI3-x series (AzrH = aziridinium). Small changes in the composition of perovskites are shown to have a defining impact on the optoelectronic properties of the reported materials. Halogen substitution allowed a variation in band gap values of these compounds, ranging from 1.57 to 2.23 eV, as established using electronic spectroscopy. Crystal structures of (AzrH)PbBrxI3-x perovskites were studied using single crystal and powder X-ray diffraction analysis. The lattice constant had a linear dependence on the Br content in the structure, thus strictly following Vegards's law. Importantly, the reported compounds displayed a preferential inclusion of iodine upon synthesis, revealing that the mixed halide perovskite composition cannot be estimated based on the precursors' ratio only, and it should be post-synthetically checked. The reported results expand the range of hybrid perovskites with tuneable band gaps beyond the conventional methylammonium and formamidinium-based perovskites and offer a new series of metal-halide hybrids suitable for photovoltaic and other optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt02879aDOI Listing

Publication Analysis

Top Keywords

mixed halide
12
band gap
8
halide aziridinium
8
perovskites
8
optoelectronic applications
8
fine-tuning optical
4
optical band
4
gap mixed
4
halide
4
aziridinium lead
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!