Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report the synthesis and characterization of octahedral UiO-66 nanocrystals ( = 17-25 nm) terminated with amine, oleate, and octadecylphosphonate ligands. Acetate capped UiO-66 nanocrystals were dispersed in toluene using oleic acid and oleylamine. Ligand exchange with octadecylphosphonic acid produces ammonium octadecylphosphonate terminated nanocrystals with coverages of 2.6-3.2 chains per nm that stabilize colloidal dispersions in nonpolar solvents. Liquid phase H and P nuclear magnetic resonance (NMR) spectra of the linkers and surface ligands display line shapes that are broadened by slow tumbling of the nanocrystals. Octadecylphosphonate functionalized MOFs have up to ∼30% carbon dioxide absorption capacities compared to bulk UiO-66 after correcting for the ligand mass. These results illustrate the intriguing perspective that MOF nanocrystals can be characterized and manipulated like a macromolecular complex and represent an important milestone in the nascent field of MOF surface science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626757 | PMC |
http://dx.doi.org/10.1039/d4sc06528j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!