Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
G protein-coupled receptors (GPCRs) regulate cellular activity by transducing external signals and selectively coupling them to intracellular partners. Ghrelin receptor (GHSR) has garnered significant interest over the past decade owing to its diverse functional roles. In this study, we simulated five distinct GHSR-partner complexes, including G, G, and arrestin in two conformational states, to investigate the structural determinants of partner coupling. Interface and contact analyses revealed conserved interaction sites and novel interactions that were specific to each partner family. Molecular dynamics simulations provided insights into GHSR conformational dynamics, highlighting notable differences in key structural regions across complexes, such as the TM5 bulge. Our findings underscore the structural diversity of GHSR coupling mechanisms and contribute to a deeper understanding of their functional versatility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629268 | PMC |
http://dx.doi.org/10.1016/j.csbj.2024.11.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!