Tuberculosis (TB) is a major global health threat and demands improved diagnostic and treatment monitoring methods. Conventional diagnostics, such as sputum smear microscopy and culture, are limited by slow results and low sensitivity, particularly in certain patient groups. Recent advances in biomarker research offer promising solutions in three key areas: risk of disease, diagnosis of active disease and monitoring of treatment response. For risk assessment, novel genetic signatures and metabolites show potential in predicting the progression from TB infection to active TB. A 16-gene signature, for example, predicts this progression with significant accuracy. In diagnosing active TB, RNA-based transcriptomic signatures provide higher diagnostic accuracy than traditional methods. These signatures, such as a three-gene RNA sequence, effectively differentiate active TB from other diseases and infections, addressing issues of specificity and sensitivity. Monitoring treatment response is crucial, given the varying response rates in treating TB. Emerging biomarkers focus on bacterial burden and host response. They offer more precise and timely assessments of treatment efficacy, enhance personalised treatment approaches and potentially improve patient outcomes. These advancements in biomarkers for TB risk, diagnosis and treatment response represent significant steps towards more effective TB management and control, aligning with global efforts to decrease the burden of TB. Here we aim to highlight several promising biomarkers used to predict risk of disease progression, active TB disease and treatment success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629168 | PMC |
http://dx.doi.org/10.1183/20734735.0003-2024 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.
Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!