Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydrodynamic mechanism of attachment that relies on fluid flow generated by the microbe. The microbe , a flagellated protozoan parasite, naturally attaches to the microvilliated surface of the small intestine but is also capable of attaching indiscriminately to a wide range of natural and artificial substrates. By tracking fluorescent quantum dots, we demonstrate a persistent flow between the parasite and substrate generated by a pair of flagella. Using both experimental measures and computational modeling, we show that the negative pressure generated by this fluid flow is sufficient to generate the previously measured force of attachment. We further show that this dynamically generated negative pressure allows to attach to both solid and porous surfaces, thereby meeting the real-world demands of attachment to the microvilliated surface of intestinal cells. These findings provide experimental support for a hydrodynamic model of attachment that may be shared by other ciliated and flagellated microbes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631216 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgae545 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!