The European Commission has proposed a Carbon Border Adjustment Mechanism (CBAM) to reduce carbon leakage and create a level playing field for its domestic products and imported goods. Nevertheless, the effectiveness of the proposal remains unclear, especially when it triggers threats of retaliation from trading partners of the European Union. We apply a Computable General Equilibrium model - Global Trade Analysis Project - to assess the economic and environmental impacts of different CBAM schemes. Here we show that the effectiveness of the CBAM to address carbon leakage risks is rather limited, and the CBAM raises concerns over global welfare costs, Correct to Gross Domestic Product (GDP) losses, and violation of equality principles. Trade retaliation leads to multiplied welfare losses, which would mostly be borne by poor countries. Our results question the carbon leakage reduction effect of a unilateral trade policy and suggest that climate change mitigation still needs to be performed within the framework of international cooperation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630705PMC
http://dx.doi.org/10.1016/j.fmre.2023.02.026DOI Listing

Publication Analysis

Top Keywords

carbon leakage
16
carbon border
8
border adjustment
8
adjustment mechanism
8
welfare losses
8
carbon
6
mechanism inefficient
4
inefficient addressing
4
addressing carbon
4
leakage
4

Similar Publications

Universal Construction of Electrical Insulation and High-Thermal-Conductivity Composites Based on the In Situ Exfoliation of Boron Nitride-Graphene Hybrid Filler.

ACS Appl Mater Interfaces

January 2025

Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.

View Article and Find Full Text PDF

All-solid-state (ASS) batteries are a promising solution to achieve carbon neutrality. ASS lithium-sulfur (Li-S) batteries stand out due to their improved safety, achieved by replacing organic solvents, which are prone to leakage and fire, with solid electrolytes. In addition, these batteries offer the benefits of higher capacity and the absence of rare metals.

View Article and Find Full Text PDF

The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.

View Article and Find Full Text PDF

Hydrate formation in porous media with upward-migrating methane and its implications for the evolution of deep-sea cold seep ecosystems.

Sci Total Environ

January 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Methane leaking from the deep seabed is a primary source of carbon and energy for various microorganisms, sustaining the evolution and productivity of cold seep ecosystems. However, the dynamics of methane hydrate formation under methane seepage conditions and potential impacts on the evolution of cold seep ecosystems remain unclear. This study investigated the dynamic formation characteristics of gas hydrates within cold seep sediments by simulating the methane leakage process.

View Article and Find Full Text PDF

Environmental impact and carbon recovery in coal gasification slag after Separation-Oxidation-Acid washing (SOA) process.

J Environ Manage

January 2025

Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. Electronic address:

Coal gasification slag (CGS) is a challenging solid waste due to the presence of highly toxic heavy metals, which pose significant risks to environmental and human health. CGS cannot be freely reused or disposed of, creating considerable obstacles to solid waste resource utilization. This study presents a novel method for heavy metal removal from CGS through a separation-oxidation-acid washing (SOA) process, which effectively recycles residual carbon (RC) while minimizing the risk of heavy metal leakage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!