Development of a β-lactamase-based aggregation-induced emission lateral flow strip for the detection of clavulanic acid in Milk.

Food Chem X

National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, PR China.

Published: December 2024

Lack of biorecognition elements significantly hinders the development of rapid detection methods for clavulanic acid (CA). To address this, we expressed Class A β-lactamases PC1 in vitro and demonstrated its high affinity for CA. Then we investigated the recognition mechanisms of PC1 for CA and identified key contact amino acids: Ser70, Lys73, Ser130, Glu166, and Lys234. Furthermore, PC1 was utilized as a novel biorecognition element to establish a "pseudo-immuno" lateral flow strip (LFS) for CA detection. Aggregation-induced emission fluorescence microspheres (AIE@FM) and biotin-streptavidin (Bio-SA) were integrated to improve the detection performance of PC1-based LFS. Results showed that the sensitivity (cut-off value) of PC1-based AIE(Bio-SA)-LFS was enhanced 2-fold and 4-fold compared to basic AIE@FM-LFS and traditional Au-based LFS, respectively. Eventually, the proposed PC1-based AIE(Bio-SA)-LFS was successfully verified in milk samples with a cut-off value of 20 ng mL. This study provides a powerful tool for on-site CA monitoring for the first time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629266PMC
http://dx.doi.org/10.1016/j.fochx.2024.101950DOI Listing

Publication Analysis

Top Keywords

aggregation-induced emission
8
lateral flow
8
flow strip
8
clavulanic acid
8
pc1-based aiebio-sa-lfs
8
development β-lactamase-based
4
β-lactamase-based aggregation-induced
4
emission lateral
4
detection
4
strip detection
4

Similar Publications

Portable and real-time detection for tetracycline antibiotics using europium-doped LDH gel intercalated graphene quantum dots.

J Hazard Mater

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China. Electronic address:

Tetracyclines (TCs) residues pose a significant threat to the aquatic environment and human health, therefore this study aims to develop a simple, rapid, and sensitive TCs detection method. Herein, a dual-responsive gel probe (LDH-CES@N) was designed, consisting of the intercalation of graphene quantum dots into europium-doped layered double hydroxide (LDH). In the presence of TCs, the as-prepared probe exhibited dual emission fluorescence at 504 nm and 616 nm due to the synergistic effect of aggregation-induced emission and antenna effect.

View Article and Find Full Text PDF

Numeric uptake drives nanoplastic toxicity: Size-effects uncovered by toxicokinetic-toxicodynamic (TKTD) modeling.

J Hazard Mater

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China. Electronic address:

Predicting nanoplastic bioaccumulation and toxicity using process-based models is challenging due to the difficulties in tracing them at low concentrations. This study investigates the size-dependent effects of nanoplastic exposure on Daphnia magna using a toxicokinetic-toxicodynamic (TKTD) model. Palladium-doped fluorescent nanoplastics in three sizes (30-nm, 66-nm, 170-nm) were tested at two numeric exposure concentrations.

View Article and Find Full Text PDF

The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities.

View Article and Find Full Text PDF

Dimethylacridine based emitters for non-doped organic light-emitting diodes with improved efficiency.

Chem Asian J

January 2025

Fujian Agriculture and Forestry University, College of Materials Engineering, No. 63, Xiyuangong Road, Minhou County, 350108, Fuzhou, CHINA.

Organic light-emitting diodes (OLEDs) has been attracting much extensive interest owing to their advantages of high-definition and flexible displays. Many advances have been focused on boosting the efficiency and stability. Two innovative dimethylacridine-based emitters,1,1,2,2-tetrakis(4- (2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl ethene (AcTPE), and bis(4-(2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl)methanone (Ac2BP) were designed and synthesized, in which TPE-baesed AcTPE presents AIE properties, and with the phenyl as spacer between the DMAC and carbony, aryl-ketone-based Ac2BP doesn't show AIE properties due to the absence of restriction of intramolecular rotations.

View Article and Find Full Text PDF

Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!