A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication and evaluation of a sensitive electrochemical sensor based on double hydroxide in nickel-aluminum nanolayers for the quantification of pyrocatechol. | LitMetric

Pyrocatechol, also known as catechol, is a commonly used compound in various industries; however, it can be toxic when used in high concentrations. Therefore, developing a highly sensitive electrochemical sensor for detecting pyrocatechol is important. Our study utilized a co-precipitation technique to fabricate a nanostructured nickel aluminum layered double hydroxide (Ni-Al-LDH). This material was thoroughly analyzed using advanced techniques to confirm its functionality, crystallinity, and morphology. Subsequently, Ni-Al-LDH was employed as an electrocatalyst for the detection of pyrocatechol in actual samples. The modified electrode showed significant responsiveness to pyrocatechol under specific conditions, with a detection limit of 1 nM. This sensor demonstrated analytical potential for the sensitive determination of pyrocatechol across a range of real samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629106PMC
http://dx.doi.org/10.1039/d4ra07716dDOI Listing

Publication Analysis

Top Keywords

sensitive electrochemical
8
electrochemical sensor
8
double hydroxide
8
pyrocatechol
6
fabrication evaluation
4
evaluation sensitive
4
sensor based
4
based double
4
hydroxide nickel-aluminum
4
nickel-aluminum nanolayers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!