A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unsupervised learning of interacting topological phases from experimental observables. | LitMetric

Unsupervised learning of interacting topological phases from experimental observables.

Fundam Res

Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, China.

Published: September 2024

Classifying topological phases of matter with strong interactions is a notoriously challenging task and has attracted considerable attention in recent years. In this paper, we propose an unsupervised machine learning approach that can classify a wide range of symmetry-protected interacting topological phases directly from the experimental observables and without a priori knowledge. We analytically show that Green's functions, which can be derived from spectral functions that can be measured directly in an experiment, are suitable for serving as the input data for our learning proposal based on the diffusion map. As a concrete example, we consider a one-dimensional interacting topological insulators model and show that, through extensive numerical simulations, our diffusion map approach works as desired. In addition, we put forward a generic scheme to measure the spectral functions in ultracold atomic systems through momentum-resolved Raman spectroscopy. Our work circumvents the costly diagonalization of the system Hamiltonian, and provides a versatile protocol for the straightforward and autonomous identification of interacting topological phases from experimental observables in an unsupervised manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630675PMC
http://dx.doi.org/10.1016/j.fmre.2022.12.016DOI Listing

Publication Analysis

Top Keywords

interacting topological
16
topological phases
16
experimental observables
12
phases experimental
8
spectral functions
8
diffusion map
8
topological
5
unsupervised learning
4
interacting
4
learning interacting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!