Ecological engineering can significantly improve ecosystem carbon sequestration. However, few studies have projected the carbon sink trends in regions where ecological engineering projects overlap and have not considered the different climate change conditions and land use scenarios. Using the ensemble empirical mode decomposition method and machine learning algorithms (enhanced boosted regression trees), the aims of this study to elucidate the stability of carbon sinks and their driving mechanisms in areas where ecological projects overlap and to predict the potential enhancement in carbon sinks under varying climate and human activity scenarios. The findings revealed that: (1) The carbon sinks clearly and steadily increased in regions where five ecological projects were implemented from 1982 to 2019. In contrast, the carbon sinks did not significantly increase in regions with two or three ecological projects. (2) As the number of ecological projects increased, the impact of human activities on the carbon sinks gradually decreased. In eastern China, rapid economic development and significant interference from human activities hindered the growth of carbon sinks. In contrast, in western China, the warming and humidification trend of the climate, large-scale afforestation, and other ecological projects have significantly improved carbon sinks. (3) The regions with five overlapping ecological projects exhibited the greatest enhancement and stability of carbon sinks under different scenarios. Compared with the SSP585 scenario, under the SSP126 scenario, the carbon sinks increased, and their stability was greater. Achieving carbon neutrality requires major ecological projects to account for the limitations imposed by climatic conditions. Instead of isolated projects or the implementation of single restoration measures, a comprehensive approach that uses the synergistic effects of combined ecological strategies is recommended.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628300PMC
http://dx.doi.org/10.3389/fpls.2024.1482077DOI Listing

Publication Analysis

Top Keywords

carbon sinks
36
ecological projects
28
carbon
13
ecological
11
projects
9
sinks
9
carbon sink
8
overlapping ecological
8
ecological engineering
8
regions ecological
8

Similar Publications

Environmental tipping points for global soil nitrogen-fixing microorganisms.

iScience

January 2025

Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Tianjin Key Laboratory of Agro-environment and Safe-product, Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.

Nitrogen-fixing microorganisms (NFMs) are important components of soil N sinks and are influenced by multiple environmental factors. We established a random forest model optimized by the distributed delayed particle swarm optimization (RODDPSO) algorithm to analyze the global NFM data. Soil pH, organic carbon (OC), mean annual precipitation (MAP), altitude, and total phosphorus (TP) are factors with contributions greater than 10% to NFMs.

View Article and Find Full Text PDF

Engineered alginate-polyethyleneimine and sludge-aluminosilicate biochar composites for greywater treatment: Performance evaluation and models for designing pilot-scale systems.

Environ Res

January 2025

Department of Environment Sciences and Engineering, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166 Rosenau, Campus Box # 7431, NC 27599, Chapel Hill, North Carolina, USA. Electronic address:

Greywater, originating from kitchen sinks and toilets, constitutes 75-80 % of the domestic wastewater produced in homes and can be reclaimed for non-potable uses. This study synthesized novel sludge-derived aluminosilicates and alginate-polyethyleneimine (PEI) biochar composites. The aluminosilicates offer a sustainable approach to sludge management, while alginate-polyethyleneimine presents a green biochar modification approach.

View Article and Find Full Text PDF

Unravelling biotic and abiotic mechanisms of mature compost to alleviate gaseous emissions in kitchen waste composting by metagenomic analysis.

Bioresour Technol

January 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Mature compost can reduce gaseous emissions in composting, but its regulation mechanisms via biotic and abiotic functions are largely unknown. This study used fresh and inactivated mature compost as additives in kitchen waste composting to unveil the relevant mechanisms using metagenomic analysis. Results showed that mature compost reduce gaseous emission by improving physiochemical properties and inoculating functional microbes.

View Article and Find Full Text PDF

Tidal-driven NO emission is a stronger resister than CH to offset annual carbon sequestration in mangrove ecosystems.

Sci Total Environ

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:

The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.

View Article and Find Full Text PDF

Ecosystem water use efficiency and carbon use efficiency respond oppositely to vegetation greening in China's Loess Plateau.

Sci Total Environ

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shaanxi Yan'an Forest Ecosystem Observation and Research Station, Beijing 100085, China; National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi'an 710061, China.

Ecosystem water use efficiency (WUE) and carbon use efficiency (CUE) are critical parameters to determine the trade-off between water consumption and carbon sequestration in drylands. However, the roles of vegetation cover, climate factors and soil moisture in affecting the coupling of WUE and CUE were still poorly understood. This study combined the spatial random forest model and structural equation model to detect the drivers of WUE and CUE variations in China's Loess Plateau during 2001-2020, a typical water-limited region with about 87 % of area experiencing significant vegetation greening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!