Sodium-ion batteries (SIBs) have emerged as promising and mature alternatives to lithium-ion batteries (LIBs) in the post-LIB era, necessitating the development of cost-effective and high-performance cathode materials. The unique crystal texture of Mn-based tunnel-structured cathode materials offers outstanding cycling stability, rate capability and air stability, making them a highly attractive option for sodium-ion storage applications. This comprehensive review summarizes recent advancements in the understanding of sodium-ion storage mechanism, synthesis techniques, and modification strategies for Mn-based tunnel-structured cathode materials, thereby significantly contributing to the advancement of high-performance cathodes for SIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc04890cDOI Listing

Publication Analysis

Top Keywords

cathode materials
16
mn-based tunnel-structured
12
sodium-ion batteries
8
mechanism synthesis
8
tunnel-structured cathode
8
sodium-ion storage
8
tunnel-structured namno
4
cathode
4
namno cathode
4
materials
4

Similar Publications

Although microenvironments surrounding single-atom catalysts (SACs) have been widely demonstrated to have a remarkable effect on their catalytic performances, it remains unclear whether the local structure beyond the secondary coordination shells works as well or not. Herein, we employed a series of metal-organic frameworks (MOFs) with well-defined and tunable second-beyond coordination spheres as model SAC electrocatalysts to discuss the influence of long-distance structure on the ammonia synthesis from nitrate, which were synthesized and denoted as Cu-NDI-X (X = NMe, H, F). It is first experimentally confirmed that the remote substitution of function groups beyond the secondary coordination sphere can remarkably affect the activity of ammonia synthesis.

View Article and Find Full Text PDF

The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.

View Article and Find Full Text PDF

In recent years, the increasing prevalence of viral infections such as dengue (DENV) and chikungunya (CHIKV) has emphasized the vital need for new diagnostic techniques that are not only quick and inexpensive but also suitable for point-of-care and home usage. Existing diagnostic procedures, while useful, sometimes have limits in terms of speed, mobility, and price, particularly in resource-constrained environments and during epidemics. To address these issues, this study proposes a novel technique that combines 3D printing technology with electrochemical biosensors to provide a highly sensitive, user-friendly, and customizable diagnostic platform.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

Employing density functional theory for ground state quantum mechanical calculations and the non-equilibrium Green's function method for transport calculations, we investigate the potential of CdS, ZnS, CdZnS, and ZnCdS as tunnel barriers in magnetic tunnel junctions for spintronics. Based on the finding that the valence band edges of these semiconductors are dominated by p orbitals and the conduction band edges by s orbitals, we show that symmetry filtering of the Bloch states in magnetic tunnel junctions with Fe electrodes results in high tunneling magnetoresistances and high spin-polarized current (up to two orders of magnitude higher than in the case of the Fe/MgO/Fe magnetic tunnel junction).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!