Aqueous zinc batteries (AZBs) hold great potential for green grid-scale energy storage due to their affordability, resource abundance, safety, and environmental friendliness. However, their practical deployment is hindered by challenges related to the electrode, electrolyte, and interface. Functional hydrogels offer a promising solution to address such challenges owing to their broad electrochemical window, tunable structures, and pressure-responsive mechanical properties. In this review, the key properties that functional hydrogels must possess for advancing AZBs, including mechanical strength, ionic conductivity, swelling behavior, and degradability, from a perspective of the full life cycle of hydrogels in AZBs are summarized. Current modification strategies aimed at enhancing these properties and improving AZB performance are also explored. The challenges and design considerations for integrating functional hydrogels with electrodes and interface are discussed. In the end, the limitations and future directions for hydrogels to bridge the gap between academia and industries for the successful deployment of AZBs are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202416345 | DOI Listing |
Adv Sci (Weinh)
January 2025
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.
Protein self-assembly allows for the formation of diverse supramolecular materials from relatively simple building blocks. In this study, a single-component self-assembling hydrogel is developed using the recombinant protein CsgA, and its successful application for spinal cord injury repair is demonstrated. Gelation is achieved by the physical entanglement of CsgA nanofibrils, resulting in a self-supporting hydrogel at low concentrations (≥5 mg mL).
View Article and Find Full Text PDFCells
December 2024
AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.
View Article and Find Full Text PDFBiopolymers
January 2025
School of Pharmacy and Bioengineering, Keele University, Keele, UK.
Cryogels were fabricated by combining polyvinyl alcohol (PVA) and chitosan of varying molecular weights (Mw). In this study, the effects of chitosan Mw, types of boron-containing molecules on network formation, and boron release rate in resulted cryogels were investigated. The PVA/chitosan blend maintained a constant 4.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Effective treatment of bone diseases is quite tricky due to the unique nature of bone tissue and the complexity of the bone repair process. In combination with biological materials, cells and biological factors can provide a highly effective and safe treatment strategy for bone repair and regeneration, especially based on these multifunctional hydrogel interface materials. However, itis still a challenge to formulate hydrogel materials with fascinating properties (e.
View Article and Find Full Text PDFSmall
January 2025
Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China.
Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!