A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reinforcing Gelatin Hydrogels via In Situ Phase Separation and Enhanced Interphase Bonding for Advanced 3D Fabrication. | LitMetric

AI Article Synopsis

  • Gelatin hydrogels, like GelMA gels, are popular in tissue engineering for their degradability and ability to support cell adhesion but struggle with mechanical performance due to a single network structure.
  • A new hydrogel is created using a phototriggered reaction, resulting in a phase-separated structure that enhances interfacial bonding and improves mechanical strength compared to traditional GelMA gels.
  • This innovative hydrogel maintains gelatin's beneficial properties and broadens its usage potential in advanced biomedical applications, particularly in 3D printing and other biofabrication technologies.

Article Abstract

Gelatin hydrogels (e.g., methacrylated gelatin gel, abbreviated GelMA gel) have garnered significant attention in tissue engineering and therapeutic drug and cell delivery due to their complete degradability and intrinsic ability to support cell adhesion. However, their practical applications are often constrained by their poor mechanical performance, which stems from their single network structure. This limitation poses significant challenges in load-bearing scenarios and restricts their use in advanced biofabrication technologies, where robust mechanical properties are essential. Here a hydrogel is developed composed entirely of gelatin using a phototriggered transient-radical and persistent-radical coupling (PTPC) reaction to achieve an optimized microstructure. This hydrogel features a phase-separated structure with enhanced interfacial bonding, significantly improving mechanical performance compared to conventional GelMA gels. Notably, this approach preserves the inherent properties of gelatin, including biocompatibility, cell adhesion, and degradability, thereby extending its applicability in the biomedical field, particularly in advanced biofabrication methods such as 3D printing. This approach offers a superior solution to meet the complex demands of sophisticated biomanufacturing technologies, expanding the potential applications of gelatin hydrogels in the biomedical field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202416432DOI Listing

Publication Analysis

Top Keywords

gelatin hydrogels
12
cell adhesion
8
mechanical performance
8
advanced biofabrication
8
biomedical field
8
gelatin
5
reinforcing gelatin
4
hydrogels situ
4
situ phase
4
phase separation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!