A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robust Damage-Sensing and Corrosion-Warning Polymeric Coatings: a New Approach to Visually Monitor the Degradation Dynamics of Coated Mg-Alloys. | LitMetric

Corrosion and degradation of magnesium (Mg) alloy result in serious damage and limit its application in new-energy automobile industry. Considerable protective coating is proposed, yet it is hindered by the difficulties in avoiding and visually monitoring coating micro-damage and localized metal corrosion. Herein, a novel anticorrosion coating system with autonomously monitoring multiple levels of damages in coated Mg-alloy system, is proposed. In this design, the top layer of coating consists of polymethyl methacrylate (PMMA) microcapsules containing crystal violet lactone (CVL) and polyurethane resin dispersed with SiO nanoparticles. Upon surface damage, the presence of SiO triggers the chromogenic reaction of CVL liberated from ruptured microcapsules, resulting in an immediate blue coloration to highlight coating damage. Meanwhile, the primer coating incorporates PMMA microcapsules with a phenolphthalein (PHP) core, which timely reveals alkaline corrosion pits at Mg alloy/coating interface by generating pink coloration. Furthermore, the microcapsules-embedded coating exhibits superior corrosion resistance. The failure evolution dynamics of coating-Mg system, including both the external coating damage and internal localized corrosion, can be visually indicated. This work provides an innovative strategy to tailor and monitor the degradation of coated Mg alloys, thereby presenting promising prospects for application in automotive anticorrosion engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202404038DOI Listing

Publication Analysis

Top Keywords

monitor degradation
8
coating
8
pmma microcapsules
8
coating damage
8
corrosion
5
robust damage-sensing
4
damage-sensing corrosion-warning
4
corrosion-warning polymeric
4
polymeric coatings
4
coatings approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!