The subjectivity of morphological assessment and the overlapping pathological features of different subtypes of myeloproliferative neoplasms (MPNs) make accurate diagnosis challenging. To improve the pathological assessment of MPNs, we developed a diagnosis model (fusion model) based on the combination of bone marrow whole-slide images (deep learning [DL] model) and clinical parameters (clinical model). Thousand and fifty-one MPN and non-MPN patients were divided into the training, internal testing and one internal and two external validation cohorts (the combined validation cohort). In the combined validation cohort, fusion model achieved higher areas under curve (AUCs) than clinical or DL model or both for MPNs and subtype identification. Compared with haematopathologists with different experience, clinical model achieved AUC which was comparable to seniors and higher than juniors (p = 0.0208) for polycythaemia vera. The AUCs of fusion model were comparable to seniors and higher than juniors for essential thrombocytosis (p = 0.0141), prefibrotic primary myelofibrosis (p = 0.0085) and overt primary myelofibrosis (p = 0.0330) identification. In conclusion, the performances of our proposed models are equivalent to senior haematopathologists and better than juniors, providing a new perspective on the utilization of DL algorithms in MPN morphological assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.19938DOI Listing

Publication Analysis

Top Keywords

morphological assessment
12
fusion model
12
clinical model
12
model
9
deep learning
8
myeloproliferative neoplasms
8
combined validation
8
validation cohort
8
model achieved
8
comparable seniors
8

Similar Publications

The tertiary structure of normal podocytes prevents protein from leaking into the urine. However, observing the complexity of podocytes is challenging because of the scale differences in their three-dimensional structure and the close proximity between neighboring cells in space. In this study, we explored podocyte-secreted angiopoietin-like 4 (ANGPTL4) as a potential morphological marker via super-resolution microscopy (SRM).

View Article and Find Full Text PDF

Emberiza buntings (Aves: Emberizidae) exhibit extensive diversity and rapid diversification within the Old World, particularly in the eastern Palearctic, making them valuable models for studying rapid radiation among sympatric species. Despite their ecological and morphological diversity, there remains a significant gap in understanding the genomic underpinnings driving their rapid speciation. To fill this gap, we assembled high-quality chromosome-level genomes of five representative Emberiza species (E.

View Article and Find Full Text PDF

Protective Effects of Heat-Killed Lactobacilli against Plasma-Induced Neurotoxicity in Multiple Sclerosis.

Probiotics Antimicrob Proteins

January 2025

Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

Heat-killed lactobacilli seem to have protective effects against oxidative stress and neurotoxicity. This study aimed to evaluate the antioxidant properties of specific heat-killed lactobacilli extracts and determine their neuroprotective effects against the neurotoxicity induced by blood plasma from people with multiple sclerosis (MS). The antioxidant activity of the three heat-killed lactobacilli was measured using the DPPH assay.

View Article and Find Full Text PDF

Eurybiomic big cats are facing significant threats from poaching, which is driven by recreation, taxidermy and wildlife trade. Species identification and age estimation are important for effective conservation management and enforcement of wildlife protection regulations. In this study, we present novel comprehensive morphometric methods for species identification and age estimation in leopards (Panthera pardus fusca) using canine and claw, the major trade articles.

View Article and Find Full Text PDF

Cardiac adaptations in young triathletes: a 9-month longitudinal study during the peak height velocity period.

Eur J Appl Physiol

January 2025

Laboratoire de Pharm-Ecologie Cardiovasculaire (EA 4278), Université d'Avignon, 33 Rue Louis Pasteur, 84000, Avignon, France.

Purpose: The present study examined the influence of endurance training on the morphological and functional heart adaptations in young athletes throughout a longitudinal 9-month follow-up period during the adolescent peak height velocity (PHV).

Methods: Thirty-six 13- to 15-year-old males (twenty-three triathletes and thirteen untrained peers) were evaluated before and after a 9-month period during PHV. Maximal oxygen uptake ( ) and power at were assessed during incremental cycling test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!