Among popular radio metal chelators, DOTA and NOTA have been remarkably considered in radionuclide therapy and imaging studies due to several advantages in pharmacology. Here, we developed a practical and general method for assembling DOTA and NOTA in the solid phase peptide (pseudo-dilute conditions) using a wide range of solvents with easily accessible and economical feedstocks, which mitigated unprecedented challenges associated with previously reported methods. This upgraded approach enabled an efficient installation of these two chelators on various bioactive peptide sequences. Finally, we assessed the antimicrobial activity of the DOTA- and NOTA-attached Combi peptides to B. subtilis, which was intact. The authenticity of the assembled DOTA framework was assessed by labeling Lu and in vitro bacterial uptake in E. coli and S. aureus. Lu-labeled DOTA-Combi peptide exhibited promising uptake for developing a bacterial infection imaging agent while negligible hemolysis activity even at >200 μM. This contribution will be valued for developing peptide radiopharmaceuticals with operational simplicity and economic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202400996DOI Listing

Publication Analysis

Top Keywords

dota nota
12
chelators dota
8
bacterial uptake
8
peptide
5
upgraded solid-phase
4
solid-phase assembly
4
assembly chelators
4
dota
4
nota enabled
4
enabled bacterial
4

Similar Publications

Fibroblast activation protein inhibitors (FAPIs) labeled with gallium-68 and lutetium-177 show potential for use in the diagnosis and treatment of various cancers expressing FAP. However, Lu-labeled FAPIs often exhibit short tumor retention time, limiting their therapeutic applications. To improve tumor retention, we synthesized three radiolabeled dimeric FAPIs, [F], [Cu], and [Ga].

View Article and Find Full Text PDF

GD2-targeted theranostics of neuroblastoma with [Cu]Cu/[Lu]Lu-hu3F8.

Eur J Nucl Med Mol Imaging

December 2024

Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist, Beijing, 100050, China.

Purpose: Neuroblastoma (NB) is a malignant embryonic tumour with poor prognosis and high mortality rate. The antigen gisialoganglioside (GD2), which is highly expressed on the surface of NB cells, is an effective target for therapy. This study aims to evaluate the GD2 expression with [Cu]Cu-NOTA-hu3F8 positron emission tomography (PET) imaging and explore the radioimmunotherapy (RIT) effect of [Lu]Lu-DOTA-hu3F8 in NB tumour models.

View Article and Find Full Text PDF

Preclinical evaluation of 64Cu/177Lu-labelled anti-CD30 monoclonal antibody for theranostics in CD30-positive lymphoma.

Eur J Nucl Med Mol Imaging

December 2024

Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China.

Purpose: CD30 serves as an ideal therapeutic target for lymphoma, but its variable expression and high relapse rate pose challenges in targeted therapy. This study aims to label the anti-CD30 monoclonal antibody with Cu/Lu for immuno-positron emission tomography (immuno-PET) and radioimmunotherapy (RIT).

Methods: CD30 binding kinetics of anti-CD30-IgG (IMB16) were measured by Biolayer interferometry (BLI).

View Article and Find Full Text PDF

Tissue factor (TF) initiates local blood clotting and infiltration of tumor-associated macrophages, leading to tumor recurrence post-local ablation. Our study addressed inefficient cancer cell killing and immunosuppressive macrophage infiltration after percutaneous ethanol injection (PEI) in hepatocellular carcinoma (HCC). We evaluated the feasibility of F-radiolabeled polypeptide TF-targeted radioligand (tTF) as a PET tracer for assessing tumor response.

View Article and Find Full Text PDF

Among popular radio metal chelators, DOTA and NOTA have been remarkably considered in radionuclide therapy and imaging studies due to several advantages in pharmacology. Here, we developed a practical and general method for assembling DOTA and NOTA in the solid phase peptide (pseudo-dilute conditions) using a wide range of solvents with easily accessible and economical feedstocks, which mitigated unprecedented challenges associated with previously reported methods. This upgraded approach enabled an efficient installation of these two chelators on various bioactive peptide sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!