A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Barrier function-based prescribed performance trajectory tracking control of wheelchair upper-limb exoskeleton robot under actuator fault and external disturbance: Experimental verification. | LitMetric

This paper presents an innovative control strategy for the trajectory tracking of wheelchair upper-limb exoskeleton robots, integrating sliding mode control with a barrier function-based prescribed performance approach to handle actuator faults and external disturbances. The dynamic model of the exoskeleton robot is first extended to account for these uncertainties. The control design is then divided into two phases. In the first phase, the sliding mode control technique is applied to ensure robust trajectory tracking by defining the tracking error between the robot's states and desired trajectories. A sliding surface is constructed based on this error, and to further enhance tracking performance, a prescribed performance control scheme is incorporated, which ensures fast error convergence and improves transient behavior. In the second phase, an advanced barrier function technique is introduced to mitigate the impact of actuator faults and disturbances, enhancing the overall robustness of the system. Stability and tracking accuracy are rigorously verified through Lyapunov theory, ensuring the system's resilience to uncertainties. The combined approach not only guarantees rapid error convergence but also prevents performance degradation due to excessive control action, maintaining system stability. Finally, the effectiveness of the proposed method is demonstrated through extensive simulations and hardware-in-loop experiments, highlighting its practical applicability for real-world exoskeleton systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2024.11.052DOI Listing

Publication Analysis

Top Keywords

prescribed performance
12
trajectory tracking
12
barrier function-based
8
function-based prescribed
8
wheelchair upper-limb
8
upper-limb exoskeleton
8
exoskeleton robot
8
sliding mode
8
mode control
8
actuator faults
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!