Evidence for a Novel X Chromosome in Termites.

Genome Biol Evol

Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany.

Published: December 2024

Termites, together with cockroaches, belong to the Blattodea. They possess an XX/XY sex determination system which has evolved from an XX/X0 system present in other Blattodean species, such as cockroaches and wood roaches. Little is currently known about the sex chromosomes of termites, their gene content, or their evolution. We here investigate the X chromosome of multiple termite species and compare them with the X chromosome of cockroaches using genomic and transcriptomic data. We find that the X chromosome of the termite Macrotermes natalensis is large and differentiated showing hall marks of sex chromosome evolution such as dosage compensation, while this does not seem to be the case in the other two termite species investigated here where sex chromosomes may be evolutionary younger. Furthermore, the X chromosome in M. natalensis is different from the X chromosome found in the cockroach Blattella germanica indicating that sex chromosome turn-over events may have happened during termite evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gbe/evae265DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662285PMC

Publication Analysis

Top Keywords

chromosome
8
sex chromosomes
8
termite species
8
sex chromosome
8
sex
5
evidence novel
4
novel chromosome
4
chromosome termites
4
termites termites
4
termites cockroaches
4

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Transcriptional coupling of telomeric retrotransposons with the cell cycle.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.

Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.

View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.

View Article and Find Full Text PDF

Background: Sweetpotato is a vegetatively propagated crop cultivated worldwide, predominantly in developing countries, valued for its adaptability, short growth cycle, and high productivity per unit land area. In most sub-Saharan African (SSA) countries, it is widely grown by smallholder farmers. Niger, Nigeria, and Benin have a huge diversity of sweetpotato accessions whose potential has not fully been explored to date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!