Norway spruce (Picea abies L.) is economically one of the most important conifer species in Europe. Spruce forests are threatened by outbreaks of the bark beetle Ips typographus L., and this will worsen with a projected warmer and drier climate and increased outbreak dynamic following storms. Volatile terpenes and aromatics play pivotal roles in defence of trees, however, little is known about the emission dynamics of these compounds from trees colonized with I. typographus, particularly in dependence on the beetle's developmental stages and colonisation densities. Here, we analysed the emission profiles of volatile organic compounds (VOCs) from spruce logs colonised with low (LDT) and high (HDT) densities of I. typographus from the initial colonisation until the emergence of the next beetle generation. A first VOCs emission peak appeared directly after colonisation and lasted for one week. It mainly consisted of monoterpenoids and most likely reflected the trees' constitutive defence against herbivory. Under HDT, a second emission maximum occurred during the larval stage, whereas under LDT a second peak appeared later during maturation feeding of callow beetles. In contrast to the first peak, sesquiterpenoids, aromatics and oxygenated monoterpenoids dominated the second peak, possibly reflecting the trees' induced defence. Developing beetles seem to face a variety of defence compounds even if the tree has been overwhelmed and colonisation by parental beetles was already successful. The specific release patterns under LDT and HDT might be due to different availability of precursor compounds, depletion of constitutively stored compounds and differences in microbial activities associated with the bark beetles. The present study highlights constitutive defence of spruce trees upon herbivore attack, and the effect of infestation density on the temporal dynamics of induced defence. Particularly the oxygenated monoterpenoid terpinen-4-ol may be used as cue to assess habitat quality and competition by newly arriving beetles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpae152 | DOI Listing |
J Anim Physiol Anim Nutr (Berl)
January 2025
Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.
The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Atmospheric Pollution Research-National Research Council (IIA-CNR), Research Area of Rome 1, Strada Provinciale 35d, Montelibretti, 9-00010 Roma, Italy.
Ecosystems and environments are impacted by atmospheric pollution, which has significant effects on human health and climate. For these reasons, devices for developing portable and low-cost monitoring systems are required to assess human exposure during daily life. In the last decade, the advancements of 3D printing technology have pushed researchers to exploit, in different fields of applications, the advantages offered, such as rapid prototyping and low-cost replication of complex sample treatment devices.
View Article and Find Full Text PDFFoods
January 2025
Research Group of Food Quality and Safety, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Ctra. Beniel, km 3.2, 03312 Orihuela, Spain.
This study aimed to investigate the nutritional value and potential for herbal tea production of two species . The analysis includes the quantification of lipids, proteins, organic acids (HPLC-MS), sugars (HPLC-MS), phenolic compounds (HPLC-MS-MS), volatile compounds (GC-MS), fatty acids (GC-MS), amino acids (HPLC-MS-MS), some minerals (ICP-MS), total phenolic content, and antioxidant activities of flowers (EBF) and thorns (EBT), as well as flowers (EPF) and thorns (EPT). The results indicate that EPF and EPT exhibit elevated levels of protein (11.
View Article and Find Full Text PDFFoods
January 2025
Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia.
The development of plant-based meat substitutes is imperative for reducing animal fat intake and promoting dietary diversification. However, the flavor profiles of these products frequently fall short of consumer expectations. This study sought to optimize the production process of meat flavorings for plant-based products using the Taguchi method.
View Article and Find Full Text PDFFoods
January 2025
Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
Nitrite and nitrate in meat products may be perceived negatively by consumers. These compounds can react to form carcinogenic volatile N-nitrosamines. "Nitrite-free" (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!