A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bilirubin reductase shows host-specific associations in animal large intestines. | LitMetric

Bilirubin reductase shows host-specific associations in animal large intestines.

ISME J

National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, United States.

Published: January 2024

Animal gastrointestinal tracts contain diverse metabolites, including various host-derived compounds that gut-associated microbes interact with. Here, we explore the diversity and evolution of bilirubin reductase, a bacterial enzyme that metabolizes the host-derived tetrapyrrole bilirubin, performing a key role in the animal heme degradation pathway. Through an analysis of the bilirubin reductase phylogeny and predicted structures, we found that the enzyme family can be divided into three distinct clades with different structural features. Using these clade definitions, we analyzed metagenomic sequencing data from multiple animal species, finding that bilirubin reductase is significantly enriched in the large intestines of animals and that the clades exhibit differences in distribution among animals. Combined with phylogenetic signal analysis, we find that the bilirubin reductase clades exhibit significant associations with specific animals and animal physiological traits like gastrointestinal anatomy and diet. These patterns demonstrate that bilirubin reductase is specifically adapted to the anoxic lower gut environment of animals and that its evolutionary history is complex, involving adaptation to a diverse collection of animals harboring bilirubin-reducing microbes. The findings suggest that bilirubin reductase evolution has been shaped by the host environment, providing a new perspective on heme metabolism in animals and highlighting the importance of the microbiome in animal physiology and evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ismejo/wrae242DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669818PMC

Publication Analysis

Top Keywords

bilirubin reductase
28
bilirubin
8
large intestines
8
clades exhibit
8
animal
6
reductase
6
animals
6
reductase host-specific
4
host-specific associations
4
associations animal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!