Background And Aims: Flower colour is a key feature in plant-pollinator interactions that make the flowers visible amid the surrounding green vegetation. Green flowers are expected to be scarcely conspicuous to pollinators; however, many of them are visited by pollinators even in the absence of other traits that might attract pollinators (e.g., floral scents). In this study, we investigate how entomophilous species with green flowers are perceived by pollinators.
Methods: We obtained reflectance spectra data of 30 European species that display green or green-yellow flowers to the human eye. These data were used to perform spectral analyses, calculate both chromatic (colour contrast against the background) and achromatic (colour contrast that relies on the signals from the green-sensitive photoreceptors) cues, and model colour perception by hymenopterans (bees) and dipterans (flies).
Key Results: The visibility of green flowers to bees and flies (i.e., their chromatic contrast values) was lower compared to other floral colours commonly pollinated by these insects, whereas green-yellow flowers were as conspicuous as the other flower colours. Green flowers with low chromatic contrast values exhibited higher achromatic contrasts, which is used to detect distant flowers at narrow visual angles, than green-yellow flowers. Additionally, the marker points (i.e., sharp transition in floral reflectance that aid pollinators in locating them) of green and green-yellow flowers aligned to some degree with the colour discrimination abilities of bees and flies.
Conclusions: We found that many entomophilous green and green-yellow flowers are conspicuous to bees and flies through their chromatic or achromatic contrasts. While acquiring pigments like carotenoids, which impart a yellowish hue to flowers and enhances their visibility to pollinators, could increase their conspicuousness, the metabolic costs of pigment production, along with the use of alternative strategies to attract pollinators, may have constrained carotenoid emergence in certain lineages of green-flowered species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/aob/mcae213 | DOI Listing |
Front Plant Sci
December 2024
International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
This research presents an innovative genetic transformation protocol for marigolds ( L.), a species of great significance in floriculture, impacting both yield and quality. The study introduces seed priming technology as a novel approach and evaluates its effect on the germination rate.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.
The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.
View Article and Find Full Text PDFSteroids
December 2024
Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India. Electronic address:
Physalis alkekengi L. is recognized as a significant source of various secondary metabolites, particularly c28 steroidal lactones known as withanolides and physalins, renowned for their therapeutic properties with a rich history in traditional medicine. In this study, we characterized the sequences of key downstream genes (PaFPPS, PaSQS, PaSQE, PaCAS, PaHYD1, and PaDWF5-1) involved in the biosynthesis of withanolides, marking the first characterization of these genes in P.
View Article and Find Full Text PDFPlant Cell Physiol
November 2024
Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA.
NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATOR FACTOR 1/2 (ATAF1/2), and CUP-SHAPED COTYLEDON (CUC2)] transcription factors are key regulators of plant growth, development, and stress responses but were also crucial players during land plant adaptation and crop domestication. Using representative members of green algae, bryophytes, lycophytes, gymnosperms, and angiosperms, we expanded the evolutionary history of NAC transcription factors to unveil the relationships among members of this gene family. We found a massive increase in the number of NAC transcription factors from green algae to lycophytes and an even larger increase in flowering plants.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.
Background: Tagetes erecta L., commonly known as American marigold, serves as a food plant used for the extraction of carotenoids such as lutein, employed both as culinary ingredient in certain dishes and for its ornamental and medicinal applications. Two extraction techniques, Soxhlet and ultrasound-assisted extraction (UAE), were used on two cultivars (yellow and orange) of T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!