Harnessing extracellular vesicle-mediated crosstalk between T cells and cancer cells for therapeutic applications.

J Control Release

Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

Published: December 2024

AI Article Synopsis

Article Abstract

Small extracellular vesicles (EVs) are a diverse group of lipid-based particles that are ≤200 nm in diameter and contain an aqueous core. EVs have been shown to mediate intercellular communications between a wide array of immune cells; the downstream effects are diverse and have potential implications for the development of novel immunotherapeutic treatments. Despite a high volume of studies addressing the role EVs play in the immune system, our understanding of the crosstalk between T cells and cancer cells remains limited. Here, we discuss how EVs derived from cancer cells modulate T cell functions and conversely, how T cell derived EVs are crucial in modulating adaptive immune functions. In the context of cancer, tumor derived EVs (TD-EVs) halt T cell-mediated immunity by interfering with effector functions and enhancing regulatory T cell (Treg) functions. In contrast, EVs derived from effector T cells can serve to stimulate anticancer immunity, curbing metastasis and tumor growth. These findings highlight important aspects of how EVs can both mediate the therapeutic effects of T cells as well as impair T cell-mediated immunity. This calls for a deeper understanding of EV-mediated effects in order to advance them as next-generation therapeutics and nanocarriers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2024.12.011DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
cells
8
crosstalk cells
8
cells cancer
8
evs
8
evs mediate
8
evs derived
8
derived evs
8
cell-mediated immunity
8
harnessing extracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!