Natural polymer hydrogels, such as pullulan-based hydrogels, offer significant advantages over synthetic materials due to their thermal stability, film-forming capacity, solubility, adhesiveness, and antioxidant properties. In this study, the strain Aureobasidium melanogenum TZ-FC3, which produces a high level of pullulan, was successfully isolated from the mangrove ecosystems of Guangdong Province, China. 66.01 ± 1.10 g/L pullulan without melanin was produced by the TZ-FC3 strain within 120 h at flask level. Pullulan fermented by A. melanogenum TZ-FC3 was added to enhance the hydrogen bond network within the pullulan/PVA/borax hydrogels (P-2, P-3 and P-4 hydrogels) to improve mechanical strength and crosslinking density of PVA/borax hydrogel (P-1 hydrogel). Compared to the P-1 hydrogel, the P-2 hydrogel exhibited a 65.4 % increase in tensile strain, a remarkable 694.03 % increase in tensile strength and improved the degree of internal crosslinking. Additionally, the pullulan/PVA/borax hydrogels demonstrated excellent self-healing properties, adhesion, injectability, and antibacterial activity. The preparation process of pullulan/PVA/borax hydrogels is straightforward and effective, suggesting broad industrial applicability and underscoring their potential as next-generation materials for advanced healthcare solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.138544 | DOI Listing |
Int J Biol Macromol
December 2024
Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Ocean Food and Biological Engineering, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:
Natural polymer hydrogels, such as pullulan-based hydrogels, offer significant advantages over synthetic materials due to their thermal stability, film-forming capacity, solubility, adhesiveness, and antioxidant properties. In this study, the strain Aureobasidium melanogenum TZ-FC3, which produces a high level of pullulan, was successfully isolated from the mangrove ecosystems of Guangdong Province, China. 66.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!