The intricate interplay between viruses and hosts involves microRNAs (miRNAs) to regulate gene expression by targeting cellular/viral messenger RNAs (mRNAs). Mouse mammary tumour virus (MMTV), the aetiological agent of breast cancer and leukaemia/lymphomas in mice, provides an ideal model to explore how viral and host miRNAs interact to modulate virus replication and tumorigenesis. We previously reported dysregulation of host miRNAs in MMTV-infected mammary glands and MMTV-induced tumours, suggesting a direct interaction between MMTV and miRNAs. To explore this further, we systematically examined all potential interactions between host miRNAs and the MMTV genome using advanced prediction tools. Leveraging miRNA sequencing data from MMTV-expressing cells, we identified dysregulated miRNAs capable of targeting MMTV. Docking analysis validated the interaction of three dysregulated miRNAs with the MMTV genome, followed by confirmation with RNA immunoprecipitation assays. We further identified host targets of these miRNAs using mRNA sequencing data from MMTV-expressing cells. These findings should enhance our understanding of how MMTV replicates and interacts with the host to induce cancer in mice, a model important for cancer research. Given MMTV's potential zoonosis and association with human breast cancer/lymphomas, if confirmed, our work could further lead to novel miRNA-based antivirals/therapeutics to prevent possible MMTV transmission and associated cancers in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631425PMC
http://dx.doi.org/10.1098/rsob.240203DOI Listing

Publication Analysis

Top Keywords

host mirnas
16
mmtv genome
12
mirnas
9
mouse mammary
8
mammary tumour
8
tumour virus
8
mmtv
8
virus mmtv
8
mirnas mmtv
8
sequencing data
8

Similar Publications

Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches.

View Article and Find Full Text PDF

Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option.

View Article and Find Full Text PDF

Deciphering Immune Modulation in Chickens Co-Infected with ALV-J and CIAV: A Transcriptomic Approach.

Microorganisms

November 2024

State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Viral co-infections pose significant challenges, causing substantial economic losses worldwide in the poultry industry. Among these, avian lLeukosis virus subgroup J (ALV-J) and chicken infectious anemia virus (CIAV) are particularly concerning, as they frequently lead to co-infections in chickens, further compromising their immune defenses, increasing susceptibility to secondary infections and diminishing vaccine efficacy. While our previous studies have examined the pathogenicity and immunosuppressive effects of these co-infections in vitro and in vivo, the key genes and molecular pathways involved remain largely unexplored.

View Article and Find Full Text PDF

Periodontitis is a multifactorial disease characterized by chronic destruction of the periodontal supporting tissues and is closely associated with the dysbiosis of the plaque biofilm. It is the leading cause of tooth loss in adults. Bacterial extracellular vesicles (BEVs) are released from bacteria, which range in size from 20 to 400 nm.

View Article and Find Full Text PDF

LncRNA MIR210HG promotes the proliferation of colon cancer cells by inhibiting ferroptosis through binding to PCBP1.

Sci Rep

January 2025

Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China.

Article Synopsis
  • The study explored the role of the MIR210 host gene (MIR210HG), a long noncoding RNA, in the growth of colon cancer cells and its connection to the ferroptosis pathway.
  • MIR210HG was found to be significantly increased in colon cancer tissues, where its overexpression enhanced cell proliferation and its knockdown reduced it.
  • The research established that MIR210HG binds to poly(rC) binding protein 1 (PCBP1), which inhibits ferroptosis and ultimately promotes colon cancer cell growth, suggesting it could be a potential target for therapy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!