Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Improving evolutionary forecasting requires progressing from studying repeated evolution of a single genotype under identical conditions to formulating broad principles. These principles should enable predictions of how similar species will adapt to similar selective pressures. Evolve-and-resequence experiments with multiple species allow testing forecasts on different biological levels and elucidating the causes for failed predictions. Here, we show that forecasts for adaptation to static culture conditions can be extended to multiple species by testing previous predictions for and . In addition to sequence divergence, these species differ in their repertoire of biofilm regulatory genes and structural components. Consistent with predictions, both species repeatedly produced biofilm mutants with a wrinkly spreader phenotype. Predominantly, mutations occurred in the operon, with less frequent promoter mutations near uncharacterized diguanylate cyclases. However, mutational patterns differed on the gene level, which was explained by a lack of conservation in relative fitness of mutants between more divergent species. The same mutation was the most frequent for both species suggesting that conserved mutation hotspots can increase parallel evolution. This study shows that evolutionary forecasts can be extended across species, but that differences in the genotype-phenotype-fitness map and mutational biases limit predictability on a detailed molecular level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631409 | PMC |
http://dx.doi.org/10.1098/rspb.2024.2312 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!