Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tineola bisselliella, the webbing clothes moth, is an economically important, globally distributed synanthropic pest species and member of the basal moth lineage Tineidae. These moths are facultatively keratinophagous, and their larvae can cause extensive damage, particularly to clothing, textiles, and museum specimens. Despite the economic and phylogenetic importance of T. bisselliella, there is a lack of quality genomic resources for this, or for other species within the Tineidae family. The T. bisselliella genome assembly presented here consists of 30 pseudochromosomes (29 autosomes and 1 Z chromosome) produced using synteny alignment of a preliminary contig-level assembly (256 contigs) to a closely related species, Tinea pellionella. The resulting final pseudochromosome-level assembly is 243.630 Mb and has an N50 length of 8.708 Mb. The assembly is highly contiguous and has similar or improved quality compared to other available Tineidae genomes, with 93.1% (91.8% single copy and 1.3% duplicated) of lepidopteran orthologs complete and present. Annotation of the pseudochromosome-level genome assembly with the transcriptome we produced ultimately yielded 11,259 annotated genes. Synteny alignments between the T. bisselliella genome assembly and other Tineidae genomes revealed evidence for numerous small rearrangements with high synteny conservation. In contrast, a synteny alignment performed between T. bisselliella and Melitaea cinxia, which is thought to have retained the ancestral karyotype (n = 31), revealed a fusion of the ancestral autosome 30 and Z chromosome that led to a reduction in T. bisselliella karyotype size. The reference quality annotated genome for T. bisselliella presented here will advance our understanding of the evolution of the lepidopteran karyotype by providing a chromosome-level genome for this basal moth lineage and provide future insights into the mechanisms underlying keratin digestion in T. bisselliella.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662235 | PMC |
http://dx.doi.org/10.1093/gbe/evae266 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!