Interface gypsum deposition in flow-electrode CDI treating brackish water: Impacts and mechanisms.

Water Res

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, PR China. Electronic address:

Published: December 2024

Flow-electrode capacitive deionization (FCDI) is a promising electrically driven technology for brackish water desalination, but it suffers from scaling issues in the concentrate chamber when treating brackish water with high levels of SO and Ca. In addition, how the key components (e.g., flow electrodes, spacer and ion exchange membranes) induce scaling in the concentrate chamber remains poorly understood. Therefore, this study systematically investigated the roles of the FCDI's components playing in the scaling process. Results showed substantial pressure loss in the concentrate chamber, which increased by 108% due to the scaling. The characterization results revealed that the scale attached to the surface of the spacer and membranes was gypsum. Gypsum crystallization experiments highlighted the crucial role of the cation exchange membrane and spacer in the heterogeneous nucleation process, which significantly shortened the induction time compared to the homogeneous nucleation process. The surface properties, such as the surface energy and surface charge, were found closely related to gypsum nucleation. In summary, the results of this work pave the way for understanding the gypsum nucleation process in FCDI continuously desalinating brackish hard water, potentially aiding in scaling removal and system optimization for broader environmental applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122920DOI Listing

Publication Analysis

Top Keywords

brackish water
12
concentrate chamber
12
nucleation process
12
treating brackish
8
gypsum nucleation
8
scaling
5
interface gypsum
4
gypsum deposition
4
deposition flow-electrode
4
flow-electrode cdi
4

Similar Publications

Species interactions can contribute to species turnover when the outcomes of the interactions are context dependent (e.g., change along environmental gradients).

View Article and Find Full Text PDF

Background: Zostera marina is an important ecosystem engineer influencing shallow water environments and possibly shaping the microbiota in surrounding sediments and water. Z. marina is typically found in marine systems, but it can also proliferate under brackish conditions.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Cyanobacterial distributions are shaped by abiotic factors including temperature, light and nutrient availability as well as biotic factors such as grazing and viral infection. In this study, we investigated the abundances of T4-like and T7-like cyanophages and the extent of picocyanobacterial infection in the cold, high-nutrient-low-chlorophyll, sub-Antarctic waters of the southwest Pacific Ocean during austral spring. Synechococcus was the dominant picocyanobacterium, ranging from 4.

View Article and Find Full Text PDF

Grey mullets (family Mugilidae) are widespread across coastal, brackish, and freshwater habitats, and have supported fisheries for millennia. Despite their global distribution and commercial value, little is known about their movement ecology and its role in the co-existence of sympatric mullet species. Gaps in knowledge about migratory behaviour, seasonal occurrence, and movement scales have also impeded effective management, highlighting the need for further research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!