Cancer stem cells (CSCs) have a crucial function in the initiation, advancement, and resistance to therapy of tumors. Recent findings indicate that non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a complex role in controlling the features of cancer stem cells (CSCs). Non-coding RNAs (ncRNAs) play a crucial role in controlling important characteristics of stem cells, such as their ability to renew themselves, differentiate into distinct cell types, and resist therapy. This article provides an overview of the current understanding of the complex relationship between non-coding RNAs (ncRNAs), namely microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and cancer stem cells (CSCs). Particular microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are involved in regulating important signaling pathways like as Wnt, Notch, and Hedgehog, which control stem cell-like characteristics. The miR-34, miR-200, and let-7 families specifically aim at inhibiting the process of self-renewal and epithelial-to-mesenchymal transition. On the other hand, long non-coding RNAs (lncRNAs) such as H19, HOTAIR, and MALAT1 play a role in modifying the epigenetic landscape, hence enhancing the characteristics of stemness. This article also offers a thorough examination of the role of non-coding RNAs (ncRNAs) in regulating cancer stemness, emphasizing their impact on crucial biochemical pathways, epigenetic changes, and therapeutic implications. Comprehending the interaction between non-coding RNAs (ncRNAs) and cancer stem cells (CSCs) provides fresh perspectives on possible focused treatments for fighting aggressive and resistant malignancies. Gaining a comprehensive understanding of the connection between non-coding RNA (ncRNA) and cancer stem cells (CSC) offers valuable insights for the development of novel and precise treatments to combat aggressive cancers that are resistant to conventional therapies. In addition, the combination of ncRNA therapies with conventional methods like as chemotherapy or epigenetic medicines could result in synergistic effects. Nevertheless, there are still obstacles to overcome in terms of delivery, effectiveness, and safety. In summary, the interaction between non-coding RNA and cancer stemness shows potential as a targeted treatment approach in the field of precision oncology. This calls for additional investigation and use in clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prp.2024.155728 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!