Long-term exposure to NP and OP, as common synthetic endocrine-disrupting chemicals (EDCs) in surface water environments in China, is closely associated with the development of chronic kidney disease (CKD). However, their potential targets and toxicological mechanisms for inducing CKD remain unknown. This study utilizes network toxicology and molecular docking techniques to explore the potential toxic targets and molecular mechanisms of CKD induction by NP and OP. We identify 49 core targets of NP and OP action in CKD using the Comparative Toxicogenomics Database (CTD) and GeneCards databases. Using the STRING database and Cytoscape software, we identify five hub genes: MAPK3, TNF, BCL2, ESR1, and FOS. We construct a nomogram model based on the CKD dataset GSE66494, utilizing these five hub genes. Calibration and ROC curves demonstrate that the model has good diagnostic value for CKD, and the DCA curve indicates that the model has high clinical utility. Single-gene GSEA enrichment analysis identifies five hub genes that influence the development of CKD through multiple biological pathways, revealing that several immune-regulatory signaling pathways are activated. The CIBERSORT algorithm identifies eight types of immune cell infiltration levels that change significantly during CKD development, and correlation analyses suggest that the five hub genes are strongly associated with multiple immune cell infiltrations. The molecular docking results suggested that ESR1, MAPK3, and TNF had the lowest binding energies and high binding affinities with NP and OP. The results of molecular dynamics simulations similarly confirmed the stability of the interactions between ESR1, MAPK3 and TNF proteins with NP and OP. The results of this study provide a theoretical basis for understanding the potential toxicity targets and mechanisms of NP- and OP-induced CKD and promote the application of network toxicology and molecular docking techniques in the study of environmental pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177980DOI Listing

Publication Analysis

Top Keywords

molecular docking
16
hub genes
16
network toxicology
12
toxicology molecular
12
docking techniques
12
mapk3 tnf
12
ckd
9
potential targets
8
targets mechanisms
8
chronic kidney
8

Similar Publications

Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses.

View Article and Find Full Text PDF

GraphkmerDTA: integrating local sequence patterns and topological information for drug-target binding affinity prediction and applications in multi-target anti-Alzheimer's drug discovery.

Mol Divers

January 2025

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.

Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.

View Article and Find Full Text PDF

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Three compounds, including a novel quinolizidine alkaloid, ochrocephalamine G (), were isolated from . Structural elucidation was achieved through spectroscopic analysis and electronic circular dichroism. Biological assays showed that ochrocephalamine G (100 μM) inhibited HBsAg and HBeAg by 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!