A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis, Characterization, and CO Methanation Over Hierarchical ZSM-5-NiCoAl Layered Double Hydroxide Nanocomposites: Improvement of C-C Coupling to Ethane. | LitMetric

To date, preparing materials with highly dispersed metal nanoparticles without metal agglomeration on a solid support is challenging. This work presents an alternative approach for synthesizing NiCo species on hierarchical ZSM-5 materials derived from a ZSM-5@NiCoAl-LDHs composite. The designed material was prepared by the growth of a NiCo-layered double hydroxides (LDHs) precursor on the surface of hierarchical ZSM-5 nanosheets. The effect of the weight ratio of NiCo-LDHs precursor to ZSM-5 on the composite properties has been studied. The results show that 45 wt.% LDHs (ZSM-5@NiCoAl-LDHs-45) is the most suitable condition for preparing NiCoAl-LDHs/ZSM-5 composite, which promotes a strong interaction between bimetallic NiCo and hierarchical ZSM-5. The ZSM-5@NiCoAl-LDHs-45 showed a BET surface of 386 m g, in which the surface area has been re-allocated between microspores and mesopores due to the presence of NiCoAl-LDHs composite. The catalyst was also tested for CO methanation at 380 °C under atmospheric hydrogen pressure. The results show that the catalyst could provide CO conversion of up to 40 % at WSHV of 2.91 h. Interestingly, it could not only promote methane but also provide a high selectivity of ethane, approximately 20.4 %. Moreover, the excellent catalytic stability of ethane production was illustrated over 24 hours of time-on-stream (TOS).

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202400926DOI Listing

Publication Analysis

Top Keywords

hierarchical zsm-5
12
synthesis characterization
4
characterization methanation
4
hierarchical
4
methanation hierarchical
4
hierarchical zsm-5-nicoal
4
zsm-5-nicoal layered
4
layered double
4
double hydroxide
4
hydroxide nanocomposites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!