Hormone functions in adventitious root formation during cutting propagation of woody plants.

J Plant Res

State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Published: December 2024

Cutting-induced adventitious root (AR) formation is crucial for vegetative propagation, a key method that produces plants identical to parent. However, many woody plants pose challenges for vegetative propagation due to difficulties in AR formation. Hormones play important roles during AR formation, with auxin serving as the key regulator and interacting with other hormones. In this review, we summarize the molecular events and hormone functions involved in AR formation in woody plants. A deeper understanding of these processes could enhance the design and manipulation of techniques to improve vegetative propagation in woody plants, ultimately leading to greater economic benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10265-024-01602-8DOI Listing

Publication Analysis

Top Keywords

woody plants
16
vegetative propagation
12
hormone functions
8
adventitious root
8
root formation
8
propagation woody
8
formation
5
plants
5
functions adventitious
4
formation cutting
4

Similar Publications

Two leucine-rich repeat receptor-like kinases initiate herbivory defense responses in tea plants.

Hortic Res

January 2025

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China.

Leucine-rich repeat receptor-like kinases (LRR-RLKs) have emerged as key regulators of herbivory perception and subsequent defense initiation. While their functions in grass plants have been gradually elucidated, the roles of herbivory-related LRR-RLKs in woody plants remain largely unknown. In this study, we mined the genomic and transcriptomic data of tea plants () and identified a total of 307 CsLRR-RLK members.

View Article and Find Full Text PDF

Creation and long-term in vitro maintenance of valuable genotype collection is one of the modern approach to conservation of valuable gene pool of woody plants. However, during prolonged cultivation, genetic variability of cells and tissues may accumulate and lead to the loss of valuable characteristics of parental plants. It is therefore important to assess the genetic (including cytogenetic) stability of collection clones.

View Article and Find Full Text PDF

Integration of resistance indicators, metabolomes, and transcriptomes to elucidate that there is a positive correlation between disease susceptibility and cold tolerance in tea plants. The flavonoid pathway was found to be the major metabolic and transcriptional enrichment pathway. A key domain NB-ARC was identified through joint analysis, along with analysis of key domains within the NB-ARC protein.

View Article and Find Full Text PDF

Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!