Purpose: To develop an end-to-end DL model for automated classification of affected territory in DWI of stroke patients.
Materials And Methods: In this retrospective multicenter study, brain DWI studies from January 2017 to April 2020 from Center 1, from June 2020 to December 2020 from Center 2, and from November 2019 to April 2020 from Center 3 were included. Four radiologists labeled images into five classes: anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior circulation (PC), and watershed (WS) regions, as well as normal images. Additionally, for Center 1, clinical information was encoded as a domain knowledge vector to incorporate into image embeddings. 3D convolutional neural network (CNN) and attention gate integrated versions for direct 3D encoding, long short-term memory (LSTM-CNN), and time-distributed layer for slice-based encoding were employed. Balanced classification accuracy, macro averaged f1 score, AUC, and interrater Cohen's kappa were calculated.
Results: Overall, 624 DWI MRIs from 3 centers were utilized (mean age, interval: 66.89 years, 29-95 years; 345 male) with 439 patients in the training, 103 in the validation, and 82 in the test sets. The best model was a slice-based parallel encoding model with 0.88 balanced accuracy, 0.80 macro-f1 score, and an AUC of 0.98. Clinical domain knowledge integration improved the performance with 0.93 best overall accuracy with parallel stream model embeddings and support vector machine classifiers. The mean kappa value for interrater agreement was 0.87.
Conclusion: Developed end-to-end deep learning models performed well in classifying affected regions from stroke in DWI.
Clinical Relevance Statement: The end-to-end deep learning model with a parallel stream encoding strategy for classifying stroke regions in DWI has performed comparably with radiologists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00234-024-03520-x | DOI Listing |
Designing dental crowns with computer-aided design software in dental laboratories is complex and time-consuming. Using real clinical datasets, we developed an end-to-end deep learning model that automatically generates personalized dental crown meshes. The input context includes the prepared tooth, its adjacent teeth, and the two closest teeth in the opposing jaw.
View Article and Find Full Text PDFNeural Netw
December 2024
College of Electronic and Information Engineering, Tongji University, China; Shanghai Institute of Intelligent Science and Technology, Tongji University, China. Electronic address:
The target of space-time video super-resolution (STVSR) is to increase both the frame rate (also referred to as the temporal resolution) and the spatial resolution of a given video. Recent approaches solve STVSR using end-to-end deep neural networks. A popular solution is to first increase the frame rate of the video; then perform feature refinement among different frame features; and at last, increase the spatial resolutions of these features.
View Article and Find Full Text PDFFront Physiol
December 2024
College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
Objective: Extracting deep features from participants' bioelectric signals and constructing models are key research directions in motor imagery (MI) classification tasks. In this study, we constructed a multimodal multitask hybrid brain-computer interface net (2M-hBCINet) based on deep features of electroencephalogram (EEG) and electromyography (EMG) to effectively accomplish motor imagery classification tasks.
Methods: The model first used a variational autoencoder (VAE) network for unsupervised learning of EEG and EMG signals to extract their deep features, and subsequently applied the channel attention mechanism (CAM) to select these deep features and highlight the advantageous features and minimize the disadvantageous ones.
Bioinformatics
December 2024
Institute of Computing Science, Poznan University of Technology, Poznan, 60-965, Poland.
Motivation: Accurately identifying ligands plays a crucial role in the process of structure-guided drug design. Based on density maps from X-ray diffraction or cryogenic-sample electron microscopy (cryoEM), scientists verify whether small-molecule ligands bind to active sites of interest. However, the interpretation of density maps is challenging, and cognitive bias can sometimes mislead investigators into modeling fictitious compounds.
View Article and Find Full Text PDFInsights Imaging
December 2024
Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany.
Objectives: Recently, epicardial adipose tissue (EAT) assessed by CT was identified as an independent mortality predictor in patients with various cardiac diseases. Our goal was to develop a deep learning pipeline for robust automatic EAT assessment in CT.
Methods: Contrast-enhanced ECG-gated cardiac and thoraco-abdominal spiral CT imaging from 1502 patients undergoing transcatheter aortic valve replacement (TAVR) was included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!