AI Article Synopsis

  • The study analyzes how a boundary between a passive fluid and an active fluid made of microtubules behaves, especially under turbulence-like conditions.
  • It finds that strong active flows cause the boundary to have pronounced asymmetries and local vortices, which disrupts spatial symmetry and leads to significant fluctuations at the interface.
  • As the activity level increases, the interface deforms more dramatically, eventually folding in on itself and creating a foam-like structure with passive droplets embedded within the active fluid.

Article Abstract

We study the structure and dynamics of the interface separating a passive fluid from a microtubule-based active fluid. Turbulent-like active flows power giant interfacial fluctuations, which exhibit pronounced asymmetry between regions of positive and negative curvature. Experiments, numerical simulations, and theoretical arguments reveal how the interface breaks up the spatial symmetry of the fundamental bend instability to generate local vortical flows that lead to asymmetric interface fluctuations. The magnitude of interface deformations increases with activity: In the high activity limit, the interface self-folds invaginating passive droplets and generating a foam-like phase, where active fluid is perforated with passive droplets. These results demonstrate how active stresses control the structure, dynamics, and break-up of soft, deformable, and reconfigurable liquid-liquid interfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665914PMC
http://dx.doi.org/10.1073/pnas.2410345121DOI Listing

Publication Analysis

Top Keywords

structure dynamics
8
active fluid
8
passive droplets
8
active
5
interface
5
asymmetric fluctuations
4
fluctuations self-folding
4
self-folding active
4
active interfaces
4
interfaces study
4

Similar Publications

Background: With the widespread application of Artificial Intelligence technology in the field of E-commerce, human-machine relationships have attracted considerable attention within the field of psychology. Address forms, as crucial linguistic cues, have shown notable progress in advancing research on interpersonal relationships; however, a comprehensive understanding of the dynamics in interpersonal (or human-machine) relationships among interactors remains elusive. Therefore, based on Social Identity Theory, this paper explores the interactive effects and underlying mechanisms of affectionate nicknames and streamer type on streamer attitude in E-commerce live streaming, with consumers' perceptions of psychological closeness serving as the mediating mechanism.

View Article and Find Full Text PDF

Chemical modulation and defect engineering in high-performance GeTe-based thermoelectrics.

Chem Sci

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University Beijing 100084 China

Thermoelectric technology plays an important role in developing sustainable clean energy and reducing carbon emissions, offering new opportunities to alleviate current energy and environmental crises. Nowadays, GeTe has emerged as a highly promising thermoelectric candidate for mid-temperature applications, due to its remarkable thermoelectric figure of merit () of 2.7.

View Article and Find Full Text PDF

Elastomers are of great significance in developing smart materials for information encryption, and their unique self-healing and highly flexible properties provide innovative solutions to enhance security and anti-counterfeiting effectiveness. However, challenges remain in the multifunctional combination of mechanical properties, self-healing, degradability, and luminescence of these materials. Herein, a chemodynamic covalent adaptable network (CCAN)-induced robust, self-healing, and degradable fluorescent elastomer is proposed.

View Article and Find Full Text PDF

Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces.

Chem Sci

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps.

View Article and Find Full Text PDF

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an ancient protein critical for CO2-fixation and global biogeochemistry. Form-I RuBisCO complexes uniquely harbor small subunits that form a hexadecameric complex together with their large subunits. The small subunit protein is thought to have significantly contributed to RuBisCO's response to the atmospheric rise of O2 ∼2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!