Epicatechin (EC)-based derivatives have garnered significant attention for their powerful antioxidant, anti-inflammatory, anticancer, and antibacterial properties, all of which are attributed to the phenolic hydroxyl groups in their structure. These compounds are promising in regenerative medicine, particularly as bioactive components in scaffolds. This review provides an in-depth analysis of the mechanisms by which EC-based materials enhance tissue repair, examining their application in various scaffold forms, such as hydrogels, nanoparticles, and nanofibers. This study also addresses the challenges of stability and bioavailability associated with ECs and proposes encapsulation techniques to overcome these barriers. The potential clinical benefits of ECs in regenerative medicine and their role in fostering advancements in tissue engineering are discussed, making this review a valuable resource for guiding future studies on the integration of ECs into clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.teb.2024.0206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!