Chem Commun (Camb)
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China.
Published: January 2025
Despite the widespread application of electrochemical systems in bioproduction, their detailed effects on photosynthetic organisms remain to be explored. In this study, a three-chamber electrochemical ion membrane system (EIMs) was optimized for minimizing carbon resource interference in the cathode chamber, thereby elucidating the role of EIMs in the light reactions of photosynthesis. By applying intermittent electrical stimulation, the photosynthetic activity of microalgae was enhanced, manifesting as the promoted accumulation of intracellular ATP and NADPH, while allowing the collection of hydrogen and oxygen as by-products. These findings suggest that EIMs not only facilitate photosynthesis by enhancing both light and dark reactions but also provide new avenues for improving the efficiency of photosynthetic production and advancing sustainable biotechnological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc05340k | DOI Listing |
Nanotechnology
January 2025
Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
The Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-90187 Umeå, Sweden.
Light-emitting electrochemical cells (LECs) are promising candidates for fully solution-processed lighting applications because they can comprise a single active-material layer and air-stable electrodes. While their performance is often claimed to be independent of the electrode material selection due to the in situ formation of electric double layers (EDLs), we demonstrate conceptually and experimentally that this understanding needs to be modified. Specifically, the exciton generation zone is observed to be affected by the electrode work function.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.
This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, TiO, and TiO oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute for Energy and Materials Processes-Reactive Fluids, University of Duisburg-Essen, 47057 Duisburg, Germany.
Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.