Lithium-rich manganese-based oxide (LRMO) materials hold great potential for high-energy-density lithium-ion batteries (LIBs) but suffer from severe voltage decay and capacity fading. Herein, we report the construction of LiF-rich solid electrolyte interphase on LRMO through a straightforward ball-milling and electrochemical approach, which exhibits remarkable structural stability and enhanced electrochemical performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc04956j | DOI Listing |
Chem Commun (Camb)
January 2025
College of Physics, Qingdao University, Qingdao 266071, China.
A polyvinylidene carbonate:BN layer was constructed between LiAlTi(PO) (LATP) and the lithium (Li) electrode, improving interfacial compatibility and thermal stability. The LiN-rich solid electrolyte interphase regulates Li deposition behaviors. The solid-state Li metal batteries (SSLMBs) show remarkable electrochemical performance, exhibiting endurance for 800 hours of cycling at 0.
View Article and Find Full Text PDFSmall
January 2025
College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China.
Realizing fast charging in high-specific-energy lithium metal batteries (LMBs) remains a significant challenge. Here, a oleophilic garnet suspension electrolyte design is reported, using inorganic solid electrolyte modified by low-surface-energy 1H,1H,2H,2H-perfluorooctyl trichlorosilane (PFOTS), to address the dilemma of fast charging and high specific energy in LMBs. With the oleophilic suspension electrolytes, the ionic conductivity of carbonate electrolyte is increased by ≈20%.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, 100191, China.
Anode-free sodium batteries (AFSBs) hold great promise for high-density energy storage. However, high-voltage AFSBs, especially those can stably cycle at a wide temperature range are challenging due to the poor electrolyte compatibility toward both the cathode and anode. Herein, high-voltage AFSBs with cycling ability in a wide temperature range (-20-60 °C) are realized for the first time via a sole-solvent high-entropy electrolyte based on the diethylene glycol dibutyl ether solvent (D2) and NaPF salt.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China. Electronic address:
Sodium-ion batteries (SIBs) have the advantages of abundant resources and low cost, making them potential candidates for the next-generation large-scale energy storage technology. However, the capacity fade during cycling used in sodium-ion batteries is a major challenge. The rational design of the electrolyte is one of the ways to solve these problems.
View Article and Find Full Text PDFNano Lett
January 2025
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Lithium nitrate (LiNO) stands as an effective electrolyte additive, mitigating the degradation of Li metal anodes by forming a LiN-rich solid electrolyte interphase (SEI). However, its conversion kinetics are impeded by energy-consuming eight-electron transfer reactions. Herein, an isoreticular metal-organic framework-8-derived carbon is incorporated into the carbon cloth (RMCC) as a catalytic current collector to regulate the LiNO conversion kinetics and boost LiN generation inside the SEI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!