Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper reports the improvement in the efficiency of embedded-cluster model (ECM) calculations in ORCA thanks to the implementation of the fast multipole method. Our implementation is based on state-of-the-art algorithms and revisits certain aspects, such as efficiently and accurately handling the extent of atomic orbital shell pairs. This enables us to decompose near-field and far-field terms in what we believe is a simple and effective manner. The main result of this work is an acceleration of the evaluation of electrostatic potential integrals by at least one order of magnitude, and up to two orders of magnitude, while maintaining excellent accuracy (always better than the chemical accuracy of 1 kcal/mol). Moreover, the implementation is versatile enough to be used with molecular systems through QM/MM approaches. The code has been fully parallelized and is available in ORCA 6.0.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629610 | PMC |
http://dx.doi.org/10.1002/jcc.27532 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!