Background: The prevalence of mental health disorders has significantly increased in recent years, posing substantial challenges to healthcare systems worldwide, particularly primary care (PC) settings. This study examines trends in mental health diagnoses in PC settings in Catalonia from 2010 to 2019 and identifies associated sociodemographic, clinical characteristics, psychopharmacological treatments, and resource utilization patterns.
Methods: Data from 947,698 individuals without prior severe mental illness, derived from the Data Analytics Program for Health Research and Innovation (PADRIS), were analyzed for this study. Sociodemographic data, diagnoses, and resource utilization were extracted from electronic health records. Descriptive statistics, chi-square tests, Mann-Whitney tests, and a multivariate binary logistic regression were employed to analyze the data.
Results: Over the study period, 172,112 individuals (18.2%) received at least one mental health diagnosis in PC, with unspecified anxiety disorder (40.5%), insomnia (15.7%) and unspecified depressive disorder (10.2%) being the most prevalent. The prevalence of these diagnoses increased steadily until 2015 and stabilized thereafter. Significant associations were found between mental health diagnoses, female sex, lower socioeconomic status, higher BMI, and smoking status in a multivariate binary logistic regression.
Conclusions: This study highlights a growing burden of stress-related mental health diagnoses in PC in Catalonia, driven by demographic and socioeconomic factors. These findings may be indicative of broader trends across Europe and globally. Addressing this rising prevalence requires innovative approaches and collaborative strategies that extend beyond traditional healthcare resources. Engaging stakeholders is essential for implementing effective, sustainable solutions that promote mental health in Catalonia and potentially inform similar initiatives worldwide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1192/j.eurpsy.2024.1793 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!